Solve the system of equations 2x-y=1; x+2y=8 graphically and find the coordinates of the points where corresponding lines intersect y-axis.
Symbol
Search
App Store
Google Play
Calculator search results
Reduce the fraction to the lowest term
Answer
See the solving process
Convert a fraction to %
Answer
See the solving process
Convert fractions to decimals
Answer
See the solving process
$\dfrac { 19 } { 55 }$
Reduce the fraction to the lowest term
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 342 } } { \color{#FF6800}{ 990 } } }$
$ $ Divide the denominator by the greatest common factor $ 18$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 342 } \color{#FF6800}{ \div } \color{#FF6800}{ 18 } } { \color{#FF6800}{ 990 } \color{#FF6800}{ \div } \color{#FF6800}{ 18 } } }$
$\dfrac { \color{#FF6800}{ 342 } \color{#FF6800}{ \div } \color{#FF6800}{ 18 } } { 990 \div 18 }$
$ $ Divide $ 342 $ by $ 18$
$\dfrac { \color{#FF6800}{ 19 } } { 990 \div 18 }$
$\dfrac { 19 } { \color{#FF6800}{ 990 } \color{#FF6800}{ \div } \color{#FF6800}{ 18 } }$
$ $ Divide $ 990 $ by $ 18$
$\dfrac { 19 } { \color{#FF6800}{ 55 } }$
$34.5 \%$
Convert a fraction to %
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 342 } } { \color{#FF6800}{ 990 } } }$
$ $ Reduce the fraction to the lowest term $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 19 } } { \color{#FF6800}{ 55 } } }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 19 } } { \color{#FF6800}{ 55 } } }$
$ $ Convert fractions to decimals $ $
$\color{#FF6800}{ 0.34546 }$
$\color{#FF6800}{ 0.34546 }$
$ $ Multiply by 100 to be presented as % $ $
$0.34546 \times \color{#FF6800}{ 100 } = \color{#FF6800}{ 34.5 }$
$0.34546 \times \color{#FF6800}{ 100 } = \color{#FF6800}{ 34.5 }$
$ $ Attach % $ $
$\color{#FF6800}{ 34.5 \% }$
$0.3 \dot{ 4 } \dot{ 5 }$
Convert fractions to decimals
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 342 } } { \color{#FF6800}{ 990 } } }$
$ $ Convert a fraction to the repeating decimal number $ $
$\color{#FF6800}{ 0.3 \dot{ 4 } \dot{ 5 } }$
Solution search results
Which of the following rational numbers are equivalent? $0Ptionsy$ A \frac{5}{6}, \frac{30}{36} B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Search count: 5,909
Check solution
Question $14$ Not yet answered Marked out of $1.00$ $1+x$ $x=\sqrt{\left(Nfrac\left(2ab\right)\left(a} +b\right)$ $1\right)$ then the value of $\right)$ $\left(fr0c\left(x+a\right)\left(x-a\right)+lfrac\left(x+b\right)\left(x-b\right)$ $1\right)$ $1s$ Select $One$ a. $a/b$ b. $1$ $○$ $c2$ $2$ $○$ d. $a^{2}+b^{2}$ $○$ CLEAR MY CHOICE
Other
Check solution
$8$ $\left(1$ Point) $1\right)$ The\ reciprocal\\ $0+11\right)$ \left(\frac{2} $c\left(2\right)$ {5}\right)^0\ $\right)$ \ $1111s\right)$ $S$ $S1S$ $s3S$ $S4S$ $s2S$
7th-9th grade
Other
Search count: 4,895
Check solution
In the following problem $a,b,$ b,and c represent REAL NUMBERS. The derivative of $g\left(x\right)=log _{a}\left(bx\right)+cx^{2}is$ $○$ $g^{1}\left(x\right)=\right)dfrac\left(b\right)log _{-}a\left(bx\right)\right)\left(N1n$ $a\right)+2cx1\right)$ $○$ $\left(g\left(x\right)=\right)dtracb$ $loga\left(bx\right)+2c\times \right)Nln$ a}\) $○$ $g^{'}\left(x\right)=\left(dfraC\left(a\right)log _{-}a\left(bx\right)\right)\left(ln$ $\right)+2c\times 1\right)\right)$ $○$ $g^{1}\left(x\right)=\left(dfrac\left(b$ $log _{-}a\left(bx\right)\right)\left(ln$ $a1\right)$ $○$ $\left(\left(g^{1}\left(x\right)=b$ $log _{-}a\left(bx\right)+2cx1\right)$ $○$ $g\left(x\right)=\left(dfrac\left(b$ $log _{-}a\left(bx\right)\right)\left(1ln$ $a|+2c1\right)$
Calculus
Check solution
$11.$ Question $11$ Solve the $:$ $folloMlng'$ $0<θ<90^{°}$ $\left(1\right)$ $2sin^{2}θ=1\right)$ $\left(rac\left(3\right)\left(2\right)\right)$ $\left(11\right)$ $3tan^{2}θ+2=3$ $\left(111\right)cos^{2}θ$ $11rac\left(1\right)\left(4\right)\right)=$ $c\left(1\right)\left(4\right)\right)=11113c\left(1\right)\left(2\right)\right)$
10th-13th grade
Trigonometry
Check solution
Can you answer this? $20$ $25$ $18$ $\left($ $\left(A\right)$ $A\right)2$ $21frac\left(5\right)\left(9\right)$ \) $\left(B\right)$ $B\right)$ $1\left(211$ $\left(C\right)$ $1\left(21$ $21+rac\left(7\right)+9\right)$ \) $\left(D\right)$ $1\left(2\right)$ 2\frac{8}{9} $ac\left(8\right)\left(9\right)$ \) $9:18PM\sqrt{} $
1st-6th grade
Algebra
Search count: 1,480
Check solution
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
App Store
Google Play
© 2021 Mathpresso Inc.
|
CEO Jongheun Lee, Yongjae Lee
|
17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul
|
EMAIL support.en@mathpresso.com