Calculator search results

Formula
Reduce the fraction to the lowest term
Answer
circle-check-icon
Convert a fraction to %
Answer
circle-check-icon
expand-arrow-icon
Convert fractions to decimals
Answer
circle-check-icon
Convert improper fractions to mixed fractions
Answer
circle-check-icon
expand-arrow-icon
$\dfrac{ 3126 }{ 999 }$
$\dfrac { 1042 } { 333 }$
Reduce the fraction to the lowest term
$\color{#FF6800}{ \dfrac { 3126 } { 999 } }$
$ $ Divide the denominator by the greatest common factor $ 3$
$\color{#FF6800}{ \dfrac { 3126 \div 3 } { 999 \div 3 } }$
$\dfrac { \color{#FF6800}{ 3126 } \color{#FF6800}{ \div } \color{#FF6800}{ 3 } } { 999 \div 3 }$
$ $ Divide $ 3126 $ by $ 3$
$\dfrac { \color{#FF6800}{ 1042 } } { 999 \div 3 }$
$\dfrac { 1042 } { \color{#FF6800}{ 999 } \color{#FF6800}{ \div } \color{#FF6800}{ 3 } }$
$ $ Divide $ 999 $ by $ 3$
$\dfrac { 1042 } { \color{#FF6800}{ 333 } }$
$312.9 \%$
Convert a fraction to %
$\color{#FF6800}{ \dfrac { 3126 } { 999 } }$
$ $ Reduce the fraction to the lowest term $ $
$\color{#FF6800}{ \dfrac { 1042 } { 333 } }$
$\color{#FF6800}{ \dfrac { 1042 } { 333 } }$
$ $ Convert fractions to decimals $ $
$\color{#FF6800}{ 3.12912 }$
$\color{#FF6800}{ 3.12912 }$
$ $ Multiply by 100 to be presented as % $ $
$3.12912 \times \color{#FF6800}{ 100 } = \color{#FF6800}{ 312.9 }$
$3.12912 \times \color{#FF6800}{ 100 } = \color{#FF6800}{ 312.9 }$
$ $ Attach % $ $
$\color{#FF6800}{ 312.9 \% }$
$3. \dot{ 1 } 2 \dot{ 9 }$
Convert fractions to decimals
$\color{#FF6800}{ \dfrac { 3126 } { 999 } }$
$ $ Convert a fraction to the repeating decimal number $ $
$\color{#FF6800}{ 3. \dot{ 1 } 2 \dot{ 9 } }$
$3 \dfrac { 43 } { 333 }$
Convert improper fractions to mixed fractions
$\color{#FF6800}{ \dfrac { 3126 } { 999 } }$
$ $ Reduce the fraction to the lowest term $ $
$\color{#FF6800}{ \dfrac { 1042 } { 333 } }$
$\color{#FF6800}{ \dfrac { 1042 } { 333 } }$
$ $ Write $ 3 $ , the quotient of $ 1042 $ $ \div $ \a2, in front of the mixed number, and write $ 43 $ in the numerator $ $
$\color{#FF6800}{ 3 \dfrac { 43 } { 333 } }$
Solution search results
search-thumbnail-Which of the following rational numbers are 
equivalent? 
$0Ptionsy$ 
A \frac{5}{6}, \frac{30}{36} 
B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ 
C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ 
D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo