# Calculator search results

Formula
Calculate the value
$\dfrac{ 3 \sqrt{ 2 } - \sqrt{ 3 } }{ \sqrt{ 3 } } + \left( 2 \sqrt{ 2 } -3 \sqrt{ 3 } \right) \times \sqrt{ 2 }$
$- 2 \sqrt{ 6 } + 3$
Calculate the value
$\color{#FF6800}{ \dfrac { 3 \sqrt{ 2 } - \sqrt{ 3 } } { \sqrt{ 3 } } } + \left ( 2 \sqrt{ 2 } - 3 \sqrt{ 3 } \right ) \sqrt{ 2 }$
 Calculate the expression 
$\color{#FF6800}{ \dfrac { 3 \sqrt{ 6 } - \left ( \sqrt{ 3 } \right ) ^ { 2 } } { 3 } } + \left ( 2 \sqrt{ 2 } - 3 \sqrt{ 3 } \right ) \sqrt{ 2 }$
$\dfrac { 3 \sqrt{ 6 } - \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } } { 3 } + \left ( 2 \sqrt{ 2 } - 3 \sqrt{ 3 } \right ) \sqrt{ 2 }$
 If you square the radical sign, it will disappear 
$\dfrac { 3 \sqrt{ 6 } - \color{#FF6800}{ 3 } } { 3 } + \left ( 2 \sqrt{ 2 } - 3 \sqrt{ 3 } \right ) \sqrt{ 2 }$
$\color{#FF6800}{ \dfrac { 3 \sqrt{ 6 } - 3 } { 3 } } + \left ( 2 \sqrt{ 2 } - 3 \sqrt{ 3 } \right ) \sqrt{ 2 }$
 Reduce the fraction 
$\sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } + \left ( 2 \sqrt{ 2 } - 3 \sqrt{ 3 } \right ) \sqrt{ 2 }$
$\sqrt{ 6 } - 1 + \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \sqrt{ \color{#FF6800}{ 2 } }$
 Multiply each term in parentheses by $\sqrt{ 2 }$
$\sqrt{ 6 } - 1 + \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } \right ) \sqrt{ \color{#FF6800}{ 2 } } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \sqrt{ \color{#FF6800}{ 2 } }$
$\sqrt{ 6 } - 1 + \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } \right ) \sqrt{ \color{#FF6800}{ 2 } } + \left ( - 3 \sqrt{ 3 } \right ) \sqrt{ 2 }$
 Get rid of unnecessary parentheses 
$\sqrt{ 6 } - 1 + \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } \sqrt{ \color{#FF6800}{ 2 } } + \left ( - 3 \sqrt{ 3 } \right ) \sqrt{ 2 }$
$\sqrt{ 6 } - 1 + \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } \sqrt{ \color{#FF6800}{ 2 } } + \left ( - 3 \sqrt{ 3 } \right ) \sqrt{ 2 }$
 Simplify the expression 
$\sqrt{ 6 } - 1 + \color{#FF6800}{ 4 } + \left ( - 3 \sqrt{ 3 } \right ) \sqrt{ 2 }$
$\sqrt{ 6 } - 1 + 4 + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \sqrt{ \color{#FF6800}{ 2 } }$
 Get rid of unnecessary parentheses 
$\sqrt{ 6 } - 1 + 4 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 2 } }$
$\sqrt{ 6 } - 1 + 4 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 2 } }$
 Simplify the expression 
$\sqrt{ 6 } - 1 + 4 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 6 } }$
$\sqrt{ \color{#FF6800}{ 6 } } - 1 + 4 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 6 } }$
 Calculate between similar terms 
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } - 1 + 4$
$- 2 \sqrt{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
 Add $- 1$ and $4$
$- 2 \sqrt{ 6 } + \color{#FF6800}{ 3 }$
Solution search results