Symbol

# Calculator search results

Formula
Calculate the value
$\dfrac{ 3 }{ 6+3 \sqrt{ 3 } }$
$2 - \sqrt{ 3 }$
Calculate the value
$\dfrac { 3 } { 6 + 3 \sqrt{ 3 } }$
 Find the conjugate irrational number of denominator 
$\color{#FF6800}{ \dfrac { 3 } { 6 + 3 \sqrt{ 3 } } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 6 - \left ( 3 \sqrt{ 3 } \right ) } { 6 - \left ( 3 \sqrt{ 3 } \right ) } }$
$\dfrac { 3 } { 6 + 3 \sqrt{ 3 } } \times \dfrac { 6 - \left ( 3 \sqrt{ 3 } \right ) } { 6 - \left ( 3 \sqrt{ 3 } \right ) }$
 The denominator is multiplied by denominator, and the numerator is multiplied by numerator 
$\color{#FF6800}{ \dfrac { 3 \left ( 6 - \left ( 3 \sqrt{ 3 } \right ) \right ) } { \left ( 6 + 3 \sqrt{ 3 } \right ) \left ( 6 - \left ( 3 \sqrt{ 3 } \right ) \right ) } }$
$\dfrac { \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \right ) } { \left ( 6 + 3 \sqrt{ 3 } \right ) \left ( 6 - \left ( 3 \sqrt{ 3 } \right ) \right ) }$
 Multiply each term in parentheses by $3$
$\dfrac { \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \right ) } { \left ( 6 + 3 \sqrt{ 3 } \right ) \left ( 6 - \left ( 3 \sqrt{ 3 } \right ) \right ) }$
$\dfrac { 3 \times 6 + 3 \times \left ( - \left ( 3 \sqrt{ 3 } \right ) \right ) } { \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \right ) }$
 Expand the expression using $\left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\dfrac { 3 \times 6 + 3 \times \left ( - \left ( 3 \sqrt{ 3 } \right ) \right ) } { \color{#FF6800}{ 6 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
$\dfrac { 3 \times 6 + 3 \times \left ( - \left ( 3 \sqrt{ 3 } \right ) \right ) } { \color{#FF6800}{ 6 } ^ { \color{#FF6800}{ 2 } } - \left ( 3 \sqrt{ 3 } \right ) ^ { 2 } }$
 Calculate power 
$\dfrac { 3 \times 6 + 3 \times \left ( - \left ( 3 \sqrt{ 3 } \right ) \right ) } { \color{#FF6800}{ 36 } - \left ( 3 \sqrt{ 3 } \right ) ^ { 2 } }$
$\dfrac { 3 \times 6 + 3 \times \left ( - \left ( 3 \sqrt{ 3 } \right ) \right ) } { 36 - \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
 Calculate power 
$\dfrac { 3 \times 6 + 3 \times \left ( - \left ( 3 \sqrt{ 3 } \right ) \right ) } { 36 - \color{#FF6800}{ 27 } }$
$\dfrac { \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 } + 3 \times \left ( - \left ( 3 \sqrt{ 3 } \right ) \right ) } { 36 - 27 }$
 Multiply $3$ and $6$
$\dfrac { \color{#FF6800}{ 18 } + 3 \times \left ( - \left ( 3 \sqrt{ 3 } \right ) \right ) } { 36 - 27 }$
$\dfrac { 18 + 3 \times \left ( \color{#FF6800}{ - } \left ( 3 \sqrt{ 3 } \right ) \right ) } { 36 - 27 }$
 Move the (-) sign forward 
$\dfrac { 18 \color{#FF6800}{ - } 3 \left ( 3 \sqrt{ 3 } \right ) } { 36 - 27 }$
$\dfrac { 18 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 3 } } \right ) } { 36 - 27 }$
 Get rid of unnecessary parentheses 
$\dfrac { 18 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 3 } } } { 36 - 27 }$
$\dfrac { 18 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 3 } } } { 36 - 27 }$
 Simplify the expression 
$\dfrac { 18 \color{#FF6800}{ - } \color{#FF6800}{ 9 } \sqrt{ \color{#FF6800}{ 3 } } } { 36 - 27 }$
$\dfrac { 18 - 9 \sqrt{ 3 } } { \color{#FF6800}{ 36 } \color{#FF6800}{ - } \color{#FF6800}{ 27 } }$
 Subtract $27$ from $36$
$\dfrac { 18 - 9 \sqrt{ 3 } } { \color{#FF6800}{ 9 } }$
$\color{#FF6800}{ \dfrac { 18 - 9 \sqrt{ 3 } } { 9 } }$
 Reduce the fraction 
$\color{#FF6800}{ 2 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture