Calculator search results

Formula
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
Graph
$y = \dfrac { 2 x - 1 } { 3 }$
$y = 5$
$x$-intercept
$\left ( \dfrac { 1 } { 2 } , 0 \right )$
$y$-intercept
$\left ( 0 , - \dfrac { 1 } { 3 } \right )$
$\dfrac{ 2x-1 }{ 3 } = 5$
$x = 8$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ \dfrac { 2 x - 1 } { 3 } } = \color{#FF6800}{ 5 }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } = \color{#FF6800}{ 15 }$
$2 x \color{#FF6800}{ - } \color{#FF6800}{ 1 } = 15$
$ $ Move the constant to the right side and change the sign $ $
$2 x = 15 \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$2 x = \color{#FF6800}{ 15 } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Add $ 15 $ and $ 1$
$2 x = \color{#FF6800}{ 16 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } = \color{#FF6800}{ 16 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 8 }$
$ $ 그래프 보기 $ $
Graph
Solution search results
search-thumbnail-$x-$ $\dfrac {2x-1} {3}=\dfrac {x-2} {4}+\dfrac {1} {3}$
7th-9th grade
Trigonometry
search-thumbnail-
$i\right)$ $x-\dfrac {2x-1} {3}=\dfrac {x-2} {4}+\dfrac {1} {3}$
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo