Solve the system of equations 2x-y=1; x+2y=8 graphically and find the coordinates of the points where corresponding lines intersect y-axis.
Symbol
Search
App Store
Google Play
Calculator search results
Solve the equation
Answer
See the solving process
Graph
See details
$y = \dfrac { 2 x - 1 } { 3 }$
$y = 5$
$x$Intercept
$\left ( \dfrac { 1 } { 2 } , 0 \right )$
$y$Intercept
$\left ( 0 , - \dfrac { 1 } { 3 } \right )$
$x = 8$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } } { \color{#FF6800}{ 3 } } } = \color{#FF6800}{ 5 }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } = \color{#FF6800}{ 15 }$
$2 x \color{#FF6800}{ - } \color{#FF6800}{ 1 } = 15$
$ $ Move the constant to the right side and change the sign $ $
$2 x = 15 \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$2 x = \color{#FF6800}{ 15 } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Add $ 15 $ and $ 1$
$2 x = \color{#FF6800}{ 16 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } = \color{#FF6800}{ 16 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 8 }$
Solution search results
Which of the following rational numbers are equivalent? $0Ptionsy$ A \frac{5}{6}, \frac{30}{36} B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Search count: 5,909
Check solution
$1$ Given the rational function $|\left(f\left(x\right)=lrgc\left(2x\right)\left(x^{n}2+3x-4\right)V$ solve for the domain and range; $X$ and $y$ intercepts; and vertical and horizontal asymptotes; intersection in HA and holes if there is any, of the given rational function. Complete the table below, graph and label the needed information. $\left(10$ points) $X$ $8$ $-6$ $-4$ $0$ $2$ $y$ $0.y4$ $-08b$ undefined $\dfrac {-2} {0.b7}$ $O$ $0.67$ $\dfrac {6} {0.2y}$
10th-13th grade
Other
Check solution
$\left($ limlimits_{Degin{array}{I) $x$ ightarrow $1\right)$ \y ightarrow $1$ end{array)}} $ac\left(\times \times 2-y^{n}$ $2\right)\times \left(x-y\right)=7\right)$
Algebra
Search count: 969
Check solution
In the following problem $a,b,$ b,and c represent REAL NUMBERS. The derivative of $g\left(x\right)=log _{a}\left(bx\right)+cx^{2}is$ $○$ $g^{1}\left(x\right)=\right)dfrac\left(b\right)log _{-}a\left(bx\right)\right)\left(N1n$ $a\right)+2cx1\right)$ $○$ $\left(g\left(x\right)=\right)dtracb$ $loga\left(bx\right)+2c\times \right)Nln$ a}\) $○$ $g^{'}\left(x\right)=\left(dfraC\left(a\right)log _{-}a\left(bx\right)\right)\left(ln$ $\right)+2c\times 1\right)\right)$ $○$ $g^{1}\left(x\right)=\left(dfrac\left(b$ $log _{-}a\left(bx\right)\right)\left(ln$ $a1\right)$ $○$ $\left(\left(g^{1}\left(x\right)=b$ $log _{-}a\left(bx\right)+2cx1\right)$ $○$ $g\left(x\right)=\left(dfrac\left(b$ $log _{-}a\left(bx\right)\right)\left(1ln$ $a|+2c1\right)$
Calculus
Check solution
$\left(int|imits$ $-0a1\left(1-\times n_{2}{\right)_{3}}^{n}$ $x^{A}3dx=7\right)$ $\left($ $frac\left(1\right)\left(40\right)\right)$ $\left($ $\left(troc\left(1\right)\left(35\right)\right)$ $\left(troc\left(1\right)\left(30\right)\right)$ $\left(tr0c\left(1\right)\left(25\right)\right)$
Calculus
Check solution
Question $14$ Not yet answered Marked out of $1.00$ $1+x$ $x=\sqrt{\left(Nfrac\left(2ab\right)\left(a} +b\right)$ $1\right)$ then the value of $\right)$ $\left(fr0c\left(x+a\right)\left(x-a\right)+lfrac\left(x+b\right)\left(x-b\right)$ $1\right)$ $1s$ Select $One$ a. $a/b$ b. $1$ $○$ $c2$ $2$ $○$ d. $a^{2}+b^{2}$ $○$ CLEAR MY CHOICE
Other
Check solution
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
App Store
Google Play
© 2021 Mathpresso Inc.
|
CEO Jongheun Lee, Yongjae Lee
|
17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul
|
EMAIL support.en@mathpresso.com