$\dfrac { 2 x + 3 } { 6 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 } { 4 } } \color{#FF6800}{ x } = \dfrac { 1 } { 4 }$
$ $ Calculate the multiplication expression $ $
$\dfrac { 2 x + 3 } { 6 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 x } { 4 } } = \dfrac { 1 } { 4 }$
$\color{#FF6800}{ \dfrac { 2 x + 3 } { 6 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 x } { 4 } } = \color{#FF6800}{ \dfrac { 1 } { 4 } }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) \right ) = \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) \right ) = \color{#FF6800}{ 3 }$
$ $ Organize the expression $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) \right ) = \color{#FF6800}{ 3 }$
$4 x + 6 - \left ( \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) \right ) = 3$
$ $ Get rid of unnecessary parentheses $ $
$4 x + 6 - \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) = 3$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) = \color{#FF6800}{ 3 }$
$ $ Organize the expression $ $
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } = \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } = \color{#FF6800}{ 3 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 3 } { 5 } }$