# Calculator search results

Formula
Solve the equation
Graph
$y = \dfrac { 2 x + 3 } { 6 } - \dfrac { 3 } { 4 } x$
$y = \dfrac { 1 } { 4 }$
$x$-intercept
$\left ( \dfrac { 6 } { 5 } , 0 \right )$
$y$-intercept
$\left ( 0 , \dfrac { 1 } { 2 } \right )$
$\dfrac{ 2x+3 }{ 6 } - \dfrac{ 3 }{ 4 } x = \dfrac{ 1 }{ 4 }$
$x = \dfrac { 3 } { 5 }$
 Solve a solution to $x$
$\dfrac { 2 x + 3 } { 6 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 } { 4 } } \color{#FF6800}{ x } = \dfrac { 1 } { 4 }$
 Calculate the multiplication expression 
$\dfrac { 2 x + 3 } { 6 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 x } { 4 } } = \dfrac { 1 } { 4 }$
$\color{#FF6800}{ \dfrac { 2 x + 3 } { 6 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 x } { 4 } } = \color{#FF6800}{ \dfrac { 1 } { 4 } }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) \right ) = \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) \right ) = \color{#FF6800}{ 3 }$
 Organize the expression 
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) \right ) = \color{#FF6800}{ 3 }$
$4 x + 6 - \left ( \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) \right ) = 3$
 Get rid of unnecessary parentheses 
$4 x + 6 - \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) = 3$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) = \color{#FF6800}{ 3 }$
 Organize the expression 
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } = \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } = \color{#FF6800}{ 3 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 3 } { 5 } }$
 그래프 보기 
Graph
Solution search results