Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
$\dfrac{ 2009 \times 2011+1 }{ 2010 }$
$2010$
Calculate the value
$\dfrac { \color{#FF6800}{ 2009 } \color{#FF6800}{ \times } \color{#FF6800}{ 2011 } + 1 } { 2010 }$
$ $ Multiply $ 2009 $ and $ 2011$
$\dfrac { \color{#FF6800}{ 4040099 } + 1 } { 2010 }$
$\dfrac { \color{#FF6800}{ 4040099 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } { 2010 }$
$ $ Add $ 4040099 $ and $ 1$
$\dfrac { \color{#FF6800}{ 4040100 } } { 2010 }$
$\color{#FF6800}{ \dfrac { 4040100 } { 2010 } }$
$ $ Reduce the fraction $ $
$\color{#FF6800}{ 2010 }$
Solution search results
search-thumbnail-The integral $\int \dfrac {1-\left(cotx\right)^{2008}d} {tanx+\left(cotx\right)^{2009}}x$ is equal to 
$\left(C$ is constant of integration) 
$O$ $\dfrac {1} {2010}ln|\left(sinx\right)^{2011}+\left(cosx\right)^{2011}|+C$ 
$O$ $\dfrac {1} {2011}ln|\left(sinx\right)^{2010}+\left(cosx\right)^{2010}|+C$ 
$O$ $\dfrac {1} {2010}ln|\left(sinx\right)^{2010}+\left(cosx\right)^{2010}|+C$ 
$O$ $\dfrac {1} {2011}ln|\left(sinx\right)^{2011}+\left(cosx\right)^{2011}|+C$
10th-13th grade
Other
search-thumbnail-$2\right)\dfrac {2-x} {2008}-1=\dfrac {1-x} {2009}-\dfrac {x} {2010}$ 
$4\right)$ $\dfrac {1-x} {2015}+\dfrac {2-x} {2014}+\dfrac {3-x} {2013}+\dfrac {4-x} {2012}+\dfrac {5-x} {2011}+\dfrac {6-x} {2010}=-6$
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo