Symbol

# Calculator search results

Formula
Solve the inequality
Graph
$\dfrac { 2 } { 5 } x - 4 \geq - 2$
$\dfrac { 2 } { 5 } x - 4 \geq - 2$
Solution of inequality
$x \geq 5$
$\dfrac{ 2 }{ 5 } x-4 \geq -2$
$x \geq 5$
 Solve a solution to $x$
$\color{#FF6800}{ \dfrac { 2 } { 5 } } \color{#FF6800}{ x } - 4 \geq - 2$
 Calculate the multiplication expression 
$\color{#FF6800}{ \dfrac { 2 x } { 5 } } - 4 \geq - 2$
$\color{#FF6800}{ \dfrac { 2 x } { 5 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \geq \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 20 } \geq \color{#FF6800}{ - } \color{#FF6800}{ 10 }$
$2 x \color{#FF6800}{ - } \color{#FF6800}{ 20 } \geq - 10$
 Move the constant to the right side and change the sign 
$2 x \geq - 10 \color{#FF6800}{ + } \color{#FF6800}{ 20 }$
$2 x \geq \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ + } \color{#FF6800}{ 20 }$
 Add $- 10$ and $20$
$2 x \geq \color{#FF6800}{ 10 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \geq \color{#FF6800}{ 10 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } \geq \color{#FF6800}{ 5 }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture