# Calculator search results

Formula
Solve the equation
Graph
$y = \dfrac { 2 } { 5 } x$
$y = \dfrac { x - 2 } { 4 } + 2$
$x$-intercept
$\left ( 0 , 0 \right )$
$y$-intercept
$\left ( 0 , 0 \right )$
$x$-intercept
$\left ( - 6 , 0 \right )$
$y$-intercept
$\left ( 0 , \dfrac { 3 } { 2 } \right )$
$\dfrac{ 2 }{ 5 } x = \dfrac{ x-2 }{ 4 } +2$
$x = 10$
 Solve a solution to $x$
$\color{#FF6800}{ \dfrac { 2 } { 5 } } \color{#FF6800}{ x } = \dfrac { x - 2 } { 4 } + 2$
 Calculate the multiplication expression 
$\color{#FF6800}{ \dfrac { 2 x } { 5 } } = \dfrac { x - 2 } { 4 } + 2$
$\dfrac { 2 x } { 5 } = \dfrac { x - 2 } { 4 } + \color{#FF6800}{ 2 }$
 Convert an equation to a fraction using $a=\dfrac{a}{1}$
$\dfrac { 2 x } { 5 } = \dfrac { x - 2 } { 4 } + \color{#FF6800}{ \dfrac { 2 } { 1 } }$
$\dfrac { 2 x } { 5 } = \color{#FF6800}{ \dfrac { x - 2 } { 4 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 2 } { 1 } }$
 Write all numerators above the least common denominator 
$\dfrac { 2 x } { 5 } = \color{#FF6800}{ \dfrac { x - 2 + 8 } { 4 } }$
$\dfrac { 2 x } { 5 } = \dfrac { x \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 8 } } { 4 }$
 Add $- 2$ and $8$
$\dfrac { 2 x } { 5 } = \dfrac { x + \color{#FF6800}{ 6 } } { 4 }$
$\color{#FF6800}{ \dfrac { 2 x } { 5 } } = \color{#FF6800}{ \dfrac { x + 6 } { 4 } }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 4 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right ) = \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 30 }$
$\color{#FF6800}{ 4 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right ) = 5 x + 30$
 Get rid of unnecessary parentheses 
$\color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ x } = 5 x + 30$
$\color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ x } = \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 30 }$
 Organize the expression 
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } = \color{#FF6800}{ 30 }$
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } = 30$
 Organize the expression 
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } = 30$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } = \color{#FF6800}{ 30 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ 10 }$
 그래프 보기 
Graph
Solution search results