Calculator search results

Formula
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$y = \dfrac { 2 } { 5 } x$
$y = \dfrac { x - 2 } { 4 } + 2$
$x$-intercept
$\left ( 0 , 0 \right )$
$y$-intercept
$\left ( 0 , 0 \right )$
$x$-intercept
$\left ( - 6 , 0 \right )$
$y$-intercept
$\left ( 0 , \dfrac { 3 } { 2 } \right )$
$\dfrac{ 2 }{ 5 } x = \dfrac{ x-2 }{ 4 } +2$
$x = 10$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ \dfrac { 2 } { 5 } } \color{#FF6800}{ x } = \dfrac { x - 2 } { 4 } + 2$
$ $ Calculate the multiplication expression $ $
$\color{#FF6800}{ \dfrac { 2 x } { 5 } } = \dfrac { x - 2 } { 4 } + 2$
$\dfrac { 2 x } { 5 } = \dfrac { x - 2 } { 4 } + \color{#FF6800}{ 2 }$
$ $ Convert an equation to a fraction using $ a=\dfrac{a}{1}$
$\dfrac { 2 x } { 5 } = \dfrac { x - 2 } { 4 } + \color{#FF6800}{ \dfrac { 2 } { 1 } }$
$\dfrac { 2 x } { 5 } = \color{#FF6800}{ \dfrac { x - 2 } { 4 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 2 } { 1 } }$
$ $ Write all numerators above the least common denominator $ $
$\dfrac { 2 x } { 5 } = \color{#FF6800}{ \dfrac { x - 2 + 8 } { 4 } }$
$\dfrac { 2 x } { 5 } = \dfrac { x \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 8 } } { 4 }$
$ $ Add $ - 2 $ and $ 8$
$\dfrac { 2 x } { 5 } = \dfrac { x + \color{#FF6800}{ 6 } } { 4 }$
$\color{#FF6800}{ \dfrac { 2 x } { 5 } } = \color{#FF6800}{ \dfrac { x + 6 } { 4 } }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 4 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right ) = \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 30 }$
$\color{#FF6800}{ 4 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right ) = 5 x + 30$
$ $ Get rid of unnecessary parentheses $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ x } = 5 x + 30$
$\color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ x } = \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 30 }$
$ $ Organize the expression $ $
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } = \color{#FF6800}{ 30 }$
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } = 30$
$ $ Organize the expression $ $
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } = 30$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } = \color{#FF6800}{ 30 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 10 }$
$ $ 그래프 보기 $ $
Graph
Solution search results
search-thumbnail-Please slove 
quesion 
Simplify the following equations $1orx$ 
(a) $\dfrac {3} {4}\left(x-4\right)=5-\dfrac {1} {4}\times $ (b) $1c\right)$ $\dfrac {4} {5}\left(x-1\right)=2-\dfrac {3} {5}x$ $\dfrac {7} {9}x+7=3x+\dfrac {4} {3}$ 
(d) $\dfrac {2} {5}x+1=x+\dfrac {1} {2}$ (e) $\dfrac {4} {5}x-\dfrac {2} {15}x=x-\dfrac {3} {7}$ $-19$ $\dfrac {1} {2}x-\dfrac {3} {10}x=x-\dfrac {1} {2}$ 
Solve: 
(o) $\dfrac {x+1} {2}-\dfrac {x+3} {3}=\dfrac {x-2} {4}-2$ (b) $\dfrac {x-1} {3}-\dfrac {x+4} {5}=\dfrac {x-3} {2}-3$ 
(c) $\pi +\dfrac {\pi +1} {2}=1+\dfrac {m+3} {4}$ (d) $m-\dfrac {\pi -1} {3}=1-\dfrac {\pi -4} {4}$ 
e) $\dfrac {a+7} {3x+5}=-5$ (f) $\dfrac {5x-2} {2x-1}=-2$ 
$\dfrac {4x-3} {a+1}=-4$ (h) $\dfrac {5x-2} {3x+5}=\dfrac {2} {3}$ 
$\dfrac {6x-1} {2x+3}=\dfrac {3} {4}$ 
$\dfrac {3x+5} {4x+3}=\dfrac {1} {2}$ 17 
Plcasc Fase
7th-9th grade
Other
search-thumbnail-$-+\dfrac {2} {3}=3$ 
$2\dfrac {2} {x-2}-\dfrac {4} {x}=2$ 
$34\dfrac {x-2} {4}+\dfrac {10} {2x}=2$ 
$A$ $\dfrac {2} {x+3}+\dfrac {3} {x-2}=1$
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo