qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Solve the inequality
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$\dfrac { 2 } { 3 } x - 3 \geq 1 + \dfrac { 1 } { 6 } x$
$\dfrac { 2 } { 3 } x - 3 \geq 1 + \dfrac { 1 } { 6 } x$
Solution of inequality
$x \geq 8$
$\dfrac{ 2 }{ 3 } x-3 \geq 1+ \dfrac{ 1 }{ 6 } x$
$x \geq 8$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ \dfrac { 2 } { 3 } } \color{#FF6800}{ x } - 3 \geq 1 + \dfrac { 1 } { 6 } x$
$ $ Calculate the multiplication expression $ $
$\color{#FF6800}{ \dfrac { 2 x } { 3 } } - 3 \geq 1 + \dfrac { 1 } { 6 } x$
$\dfrac { 2 x } { 3 } - 3 \geq 1 + \color{#FF6800}{ \dfrac { 1 } { 6 } } \color{#FF6800}{ x }$
$ $ Calculate the multiplication expression $ $
$\dfrac { 2 x } { 3 } - 3 \geq 1 + \color{#FF6800}{ \dfrac { x } { 6 } }$
$\color{#FF6800}{ \dfrac { 2 x } { 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \geq \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { x } { 6 } }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 18 } \geq \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right ) - 18 \geq x + 6$
$ $ Get rid of unnecessary parentheses $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ x } - 18 \geq x + 6$
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ x } - 18 \geq x + 6$
$ $ Simplify the expression $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } - 18 \geq x + 6$
$4 x - 18 \geq \color{#FF6800}{ x } + 6$
$ $ Move the variable to the left-hand side and change the symbol $ $
$4 x - 18 \color{#FF6800}{ - } \color{#FF6800}{ x } \geq 6$
$4 x \color{#FF6800}{ - } \color{#FF6800}{ 18 } - x \geq 6$
$ $ Move the constant to the right side and change the sign $ $
$4 x - x \geq 6 \color{#FF6800}{ + } \color{#FF6800}{ 18 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ x } \geq 6 + 18$
$ $ Organize the expression $ $
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \geq 6 + 18$
$3 x \geq \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 18 }$
$ $ Add $ 6 $ and $ 18$
$3 x \geq \color{#FF6800}{ 24 }$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \geq \color{#FF6800}{ 24 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } \geq \color{#FF6800}{ 8 }$
$ $ 그래프 보기 $ $
Inequality
Solution search results
search-thumbnail-Which of the following rational numbers are 
equivalent? 
$0Ptionsy$ 
A \frac{5}{6}, \frac{30}{36} 
B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ 
C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ 
D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo