Calculator search results

Formula
Find the sum or difference of the fractions
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$\dfrac{ 2 }{ 3 } - \dfrac{ 1 }{ 2 } + \dfrac{ 5 }{ 6 }$
$1$
Find the sum or difference of the fractions
$\dfrac { 2 } { \color{#FF6800}{ 3 } } - \dfrac { 1 } { \color{#FF6800}{ 2 } } + \dfrac { 5 } { \color{#FF6800}{ 6 } }$
$ $ The smallest common multiple in denominator is $ 6$
$\dfrac { 2 } { \color{#FF6800}{ 3 } } - \dfrac { 1 } { \color{#FF6800}{ 2 } } + \dfrac { 5 } { \color{#FF6800}{ 6 } }$
$\dfrac { 2 } { 3 } - \dfrac { 1 } { 2 } + \dfrac { 5 } { 6 }$
$ $ Multiply the denominator and the numerator so that the denominator is the smallest common multiple $ $
$\dfrac { 2 \times \color{#FF6800}{ 2 } } { 3 \times \color{#FF6800}{ 2 } } - \dfrac { 1 \times \color{#FF6800}{ 3 } } { 2 \times \color{#FF6800}{ 3 } } + \dfrac { 5 } { 6 }$
$\color{#FF6800}{ \dfrac { 2 \times 2 } { 3 \times 2 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 \times 3 } { 2 \times 3 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 5 } { 6 } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ \dfrac { 4 } { 6 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 } { 6 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 5 } { 6 } }$
$\color{#FF6800}{ \dfrac { 4 } { 6 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 } { 6 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 5 } { 6 } }$
$ $ Since the denominator is the same as $ 6 $ , combine the fractions into one $ $
$\color{#FF6800}{ \dfrac { 4 - 3 + 5 } { 6 } }$
$\dfrac { \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 5 } } { 6 }$
$ $ Calculate the sum or the difference $ $
$\dfrac { \color{#FF6800}{ 6 } } { 6 }$
$\color{#FF6800}{ \dfrac { 6 } { 6 } }$
$ $ Reduce the fraction to the lowest term $ $
$\color{#FF6800}{ 1 }$
Solution search results
search-thumbnail-$\dfrac {5} {6}$ $\dfrac {3\dfrac {2} {3}\times 5\dfrac {1} {4}-3\dfrac {1} {2}\times 4} {3\dfrac {2} {3}-5\dfrac {1} {4}\times 3\dfrac {1} {2}+4}\dfrac {5} {6}$
1st-6th grade
Calculus
search-thumbnail-Which of the following rational numbers are 
equivalent? 
$0Ptionsy$ 
A \frac{5}{6}, \frac{30}{36} 
B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ 
C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ 
D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo