Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$\dfrac{ 2 }{ \sqrt{ 5 } } \left( \sqrt{ 2 } - \sqrt{ 5 } \right) + \dfrac{ 1 }{ \sqrt{ 7 } } \left( \sqrt{ 14 } + \dfrac{ 3 \sqrt{ 70 } }{ 5 } \right) - \sqrt{ 2 }$
$\sqrt{ 10 } - 2$
Calculate the value
$\color{#FF6800}{ \dfrac { 2 } { \sqrt{ 5 } } } \left ( \sqrt{ 2 } - \sqrt{ 5 } \right ) + \dfrac { 1 } { \sqrt{ 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$ $ Calculate the expression $ $
$\color{#FF6800}{ \dfrac { 2 \sqrt{ 5 } } { 5 } } \left ( \sqrt{ 2 } - \sqrt{ 5 } \right ) + \dfrac { 1 } { \sqrt{ 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$\color{#FF6800}{ \dfrac { 2 \sqrt{ 5 } } { 5 } } \left ( \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 5 } } \right ) + \dfrac { 1 } { \sqrt{ 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$ $ Multiply each term in parentheses by $ \dfrac { 2 \sqrt{ 5 } } { 5 }$
$\color{#FF6800}{ \dfrac { 2 \sqrt{ 5 } } { 5 } } \sqrt{ \color{#FF6800}{ 2 } } + \color{#FF6800}{ \dfrac { 2 \sqrt{ 5 } } { 5 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 5 } } \right ) + \dfrac { 1 } { \sqrt{ 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$\color{#FF6800}{ \dfrac { 2 \sqrt{ 5 } } { 5 } } \sqrt{ \color{#FF6800}{ 2 } } + \dfrac { 2 \sqrt{ 5 } } { 5 } \times \left ( - \sqrt{ 5 } \right ) + \dfrac { 1 } { \sqrt{ 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$ $ Arrange the terms multiplied by fractions $ $
$\color{#FF6800}{ \dfrac { \left ( 2 \sqrt{ 5 } \right ) \sqrt{ 2 } } { 5 } } + \dfrac { 2 \sqrt{ 5 } } { 5 } \times \left ( - \sqrt{ 5 } \right ) + \dfrac { 1 } { \sqrt{ 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$\dfrac { \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 5 } } \right ) \sqrt{ \color{#FF6800}{ 2 } } } { 5 } + \dfrac { 2 \sqrt{ 5 } } { 5 } \times \left ( - \sqrt{ 5 } \right ) + \dfrac { 1 } { \sqrt{ 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$ $ Get rid of unnecessary parentheses $ $
$\dfrac { \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 5 } } \sqrt{ \color{#FF6800}{ 2 } } } { 5 } + \dfrac { 2 \sqrt{ 5 } } { 5 } \times \left ( - \sqrt{ 5 } \right ) + \dfrac { 1 } { \sqrt{ 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$\dfrac { \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 5 } } \sqrt{ \color{#FF6800}{ 2 } } } { 5 } + \dfrac { 2 \sqrt{ 5 } } { 5 } \times \left ( - \sqrt{ 5 } \right ) + \dfrac { 1 } { \sqrt{ 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$ $ Simplify the expression $ $
$\dfrac { \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 10 } } } { 5 } + \dfrac { 2 \sqrt{ 5 } } { 5 } \times \left ( - \sqrt{ 5 } \right ) + \dfrac { 1 } { \sqrt{ 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$\dfrac { 2 \sqrt{ 10 } } { 5 } + \dfrac { 2 \sqrt{ 5 } } { 5 } \times \left ( \color{#FF6800}{ - } \sqrt{ 5 } \right ) + \dfrac { 1 } { \sqrt{ 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$ $ Move the (-) sign forward $ $
$\dfrac { 2 \sqrt{ 10 } } { 5 } \color{#FF6800}{ - } \dfrac { 2 \sqrt{ 5 } } { 5 } \sqrt{ 5 } + \dfrac { 1 } { \sqrt{ 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$\dfrac { 2 \sqrt{ 10 } } { 5 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 2 \sqrt{ 5 } } { 5 } } \sqrt{ \color{#FF6800}{ 5 } } + \dfrac { 1 } { \sqrt{ 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$ $ Arrange the terms multiplied by fractions $ $
$\dfrac { 2 \sqrt{ 10 } } { 5 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \left ( 2 \sqrt{ 5 } \right ) \sqrt{ 5 } } { 5 } } + \dfrac { 1 } { \sqrt{ 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$\dfrac { 2 \sqrt{ 10 } } { 5 } - \dfrac { \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 5 } } \right ) \sqrt{ \color{#FF6800}{ 5 } } } { 5 } + \dfrac { 1 } { \sqrt{ 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$ $ Get rid of unnecessary parentheses $ $
$\dfrac { 2 \sqrt{ 10 } } { 5 } - \dfrac { \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 5 } } \sqrt{ \color{#FF6800}{ 5 } } } { 5 } + \dfrac { 1 } { \sqrt{ 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$\dfrac { 2 \sqrt{ 10 } } { 5 } - \dfrac { \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 5 } } \sqrt{ \color{#FF6800}{ 5 } } } { 5 } + \dfrac { 1 } { \sqrt{ 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$ $ Simplify the expression $ $
$\dfrac { 2 \sqrt{ 10 } } { 5 } - \dfrac { \color{#FF6800}{ 10 } } { 5 } + \dfrac { 1 } { \sqrt{ 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$\dfrac { 2 \sqrt{ 10 } } { 5 } - \color{#FF6800}{ \dfrac { 10 } { 5 } } + \dfrac { 1 } { \sqrt{ 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$ $ Reduce the fraction $ $
$\dfrac { 2 \sqrt{ 10 } } { 5 } - \color{#FF6800}{ 2 } + \dfrac { 1 } { \sqrt{ 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$\dfrac { 2 \sqrt{ 10 } } { 5 } - 2 + \color{#FF6800}{ \dfrac { 1 } { \sqrt{ 7 } } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$ $ Calculate the expression $ $
$\dfrac { 2 \sqrt{ 10 } } { 5 } - 2 + \color{#FF6800}{ \dfrac { \sqrt{ 7 } } { 7 } } \left ( \sqrt{ 14 } + \dfrac { 3 \sqrt{ 70 } } { 5 } \right ) - \sqrt{ 2 }$
$\dfrac { 2 \sqrt{ 10 } } { 5 } - 2 + \dfrac { \sqrt{ 7 } } { 7 } \left ( \sqrt{ \color{#FF6800}{ 14 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 3 \sqrt{ 70 } } { 5 } } \right ) - \sqrt{ 2 }$
$ $ Find the sum of the fractions $ $
$\dfrac { 2 \sqrt{ 10 } } { 5 } - 2 + \dfrac { \sqrt{ 7 } } { 7 } \times \color{#FF6800}{ \dfrac { 5 \sqrt{ 14 } + 3 \sqrt{ 70 } } { 5 } } - \sqrt{ 2 }$
$\dfrac { 2 \sqrt{ 10 } } { 5 } - 2 + \color{#FF6800}{ \dfrac { \sqrt{ 7 } } { 7 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 5 \sqrt{ 14 } + 3 \sqrt{ 70 } } { 5 } } - \sqrt{ 2 }$
$ $ Arrange the terms multiplied by fractions $ $
$\dfrac { 2 \sqrt{ 10 } } { 5 } - 2 + \color{#FF6800}{ \dfrac { \sqrt{ 7 } \left ( 5 \sqrt{ 14 } + 3 \sqrt{ 70 } \right ) } { 7 \times 5 } } - \sqrt{ 2 }$
$\dfrac { 2 \sqrt{ 10 } } { 5 } - 2 + \dfrac { \sqrt{ \color{#FF6800}{ 7 } } \left ( \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 14 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 70 } } \right ) } { 7 \times 5 } - \sqrt{ 2 }$
$ $ Multiply each term in parentheses by $ \sqrt{ 7 }$
$\dfrac { 2 \sqrt{ 10 } } { 5 } - 2 + \dfrac { \sqrt{ \color{#FF6800}{ 7 } } \left ( \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 14 } } \right ) \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 7 } } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 70 } } \right ) } { 7 \times 5 } - \sqrt{ 2 }$
$\dfrac { 2 \sqrt{ 10 } } { 5 } - 2 + \dfrac { \sqrt{ \color{#FF6800}{ 7 } } \left ( \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 14 } } \right ) + \sqrt{ 7 } \left ( 3 \sqrt{ 70 } \right ) } { 7 \times 5 } - \sqrt{ 2 }$
$ $ Get rid of unnecessary parentheses $ $
$\dfrac { 2 \sqrt{ 10 } } { 5 } - 2 + \dfrac { \sqrt{ \color{#FF6800}{ 7 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 14 } } + \sqrt{ 7 } \left ( 3 \sqrt{ 70 } \right ) } { 7 \times 5 } - \sqrt{ 2 }$
$\dfrac { 2 \sqrt{ 10 } } { 5 } - 2 + \dfrac { \sqrt{ \color{#FF6800}{ 7 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 14 } } + \sqrt{ 7 } \left ( 3 \sqrt{ 70 } \right ) } { 7 \times 5 } - \sqrt{ 2 }$
$ $ Simplify the expression $ $
$\dfrac { 2 \sqrt{ 10 } } { 5 } - 2 + \dfrac { \color{#FF6800}{ 35 } \sqrt{ \color{#FF6800}{ 2 } } + \sqrt{ 7 } \left ( 3 \sqrt{ 70 } \right ) } { 7 \times 5 } - \sqrt{ 2 }$
$\dfrac { 2 \sqrt{ 10 } } { 5 } - 2 + \dfrac { 35 \sqrt{ 2 } + \sqrt{ \color{#FF6800}{ 7 } } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 70 } } \right ) } { 7 \times 5 } - \sqrt{ 2 }$
$ $ Get rid of unnecessary parentheses $ $
$\dfrac { 2 \sqrt{ 10 } } { 5 } - 2 + \dfrac { 35 \sqrt{ 2 } + \sqrt{ \color{#FF6800}{ 7 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 70 } } } { 7 \times 5 } - \sqrt{ 2 }$
$\dfrac { 2 \sqrt{ 10 } } { 5 } - 2 + \dfrac { 35 \sqrt{ 2 } + \sqrt{ \color{#FF6800}{ 7 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 70 } } } { 7 \times 5 } - \sqrt{ 2 }$
$ $ Simplify the expression $ $
$\dfrac { 2 \sqrt{ 10 } } { 5 } - 2 + \dfrac { 35 \sqrt{ 2 } + \color{#FF6800}{ 21 } \sqrt{ \color{#FF6800}{ 10 } } } { 7 \times 5 } - \sqrt{ 2 }$
$\dfrac { 2 \sqrt{ 10 } } { 5 } - 2 + \color{#FF6800}{ \dfrac { 35 \sqrt{ 2 } + 21 \sqrt{ 10 } } { 7 \times 5 } } - \sqrt{ 2 }$
$ $ Reduce the fraction $ $
$\dfrac { 2 \sqrt{ 10 } } { 5 } - 2 + \color{#FF6800}{ \dfrac { 5 \sqrt{ 2 } + 3 \sqrt{ 10 } } { 5 } } - \sqrt{ 2 }$
$\dfrac { 2 \sqrt{ 10 } } { 5 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 5 \sqrt{ 2 } + 3 \sqrt{ 10 } } { 5 } } - \sqrt{ 2 }$
$ $ Get the subtract $ $
$\dfrac { 2 \sqrt{ 10 } } { 5 } + \color{#FF6800}{ \dfrac { - 10 + 5 \sqrt{ 2 } + 3 \sqrt{ 10 } } { 5 } } - \sqrt{ 2 }$
$\color{#FF6800}{ \dfrac { 2 \sqrt{ 10 } } { 5 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { - 10 + 5 \sqrt{ 2 } + 3 \sqrt{ 10 } } { 5 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } }$
$ $ Find the sum of the fractions $ $
$\color{#FF6800}{ \dfrac { 2 \sqrt{ 10 } - 10 + 5 \sqrt{ 2 } + 3 \sqrt{ 10 } - 5 \sqrt{ 2 } } { 5 } }$
$\dfrac { 2 \sqrt{ 10 } - 10 \color{#FF6800}{ + } \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 2 } } + 3 \sqrt{ 10 } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 2 } } } { 5 }$
$ $ Eliminate opponent number $ $
$\dfrac { 2 \sqrt{ 10 } - 10 + 3 \sqrt{ 10 } } { 5 }$
$\dfrac { \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 10 } } - 10 \color{#FF6800}{ + } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 10 } } } { 5 }$
$ $ Calculate between similar terms $ $
$\dfrac { \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 10 } } - 10 } { 5 }$
$\color{#FF6800}{ \dfrac { 5 \sqrt{ 10 } - 10 } { 5 } }$
$ $ Reduce the fraction $ $
$\sqrt{ \color{#FF6800}{ 10 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-Which of the following rational numbers are 
equivalent? 
$0Ptionsy$ 
A \frac{5}{6}, \frac{30}{36} 
B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ 
C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ 
D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo