Calculator search results

Formula
Reduce the fraction to the lowest term
Answer
circle-check-icon
Convert a fraction to %
Answer
circle-check-icon
expand-arrow-icon
Convert fractions to decimals
Answer
circle-check-icon
Convert improper fractions to mixed fractions
Answer
circle-check-icon
expand-arrow-icon
$\dfrac{ 1629 }{ 990 }$
$\dfrac { 181 } { 110 }$
Reduce the fraction to the lowest term
$\color{#FF6800}{ \dfrac { 1629 } { 990 } }$
$ $ Divide the denominator by the greatest common factor $ 9$
$\color{#FF6800}{ \dfrac { 1629 \div 9 } { 990 \div 9 } }$
$\dfrac { \color{#FF6800}{ 1629 } \color{#FF6800}{ \div } \color{#FF6800}{ 9 } } { 990 \div 9 }$
$ $ Divide $ 1629 $ by $ 9$
$\dfrac { \color{#FF6800}{ 181 } } { 990 \div 9 }$
$\dfrac { 181 } { \color{#FF6800}{ 990 } \color{#FF6800}{ \div } \color{#FF6800}{ 9 } }$
$ $ Divide $ 990 $ by $ 9$
$\dfrac { 181 } { \color{#FF6800}{ 110 } }$
$164.5 \%$
Convert a fraction to %
$\color{#FF6800}{ \dfrac { 1629 } { 990 } }$
$ $ Reduce the fraction to the lowest term $ $
$\color{#FF6800}{ \dfrac { 181 } { 110 } }$
$\color{#FF6800}{ \dfrac { 181 } { 110 } }$
$ $ Convert fractions to decimals $ $
$\color{#FF6800}{ 1.64546 }$
$\color{#FF6800}{ 1.64546 }$
$ $ Multiply by 100 to be presented as % $ $
$1.64546 \times \color{#FF6800}{ 100 } = \color{#FF6800}{ 164.5 }$
$1.64546 \times \color{#FF6800}{ 100 } = \color{#FF6800}{ 164.5 }$
$ $ Attach % $ $
$\color{#FF6800}{ 164.5 \% }$
$1.6 \dot{ 4 } \dot{ 5 }$
Convert fractions to decimals
$\color{#FF6800}{ \dfrac { 1629 } { 990 } }$
$ $ Convert a fraction to the repeating decimal number $ $
$\color{#FF6800}{ 1.6 \dot{ 4 } \dot{ 5 } }$
$1 \dfrac { 71 } { 110 }$
Convert improper fractions to mixed fractions
$\color{#FF6800}{ \dfrac { 1629 } { 990 } }$
$ $ Reduce the fraction to the lowest term $ $
$\color{#FF6800}{ \dfrac { 181 } { 110 } }$
$\color{#FF6800}{ \dfrac { 181 } { 110 } }$
$ $ Write $ 1 $ , the quotient of $ 181 $ $ \div $ \a2, in front of the mixed number, and write $ 71 $ in the numerator $ $
$\color{#FF6800}{ 1 \dfrac { 71 } { 110 } }$
Solution search results
search-thumbnail-$4$ $1fx=2.352$ then $x$ is equal to 
$\left($ (a) $\right)$ $\dfrac {2352} {999}$ $\left($ $b$ (b) $\right)$ $\dfrac {2329} {999}$ 
$\left($ (c) $\right)$ $\dfrac {2352} {990}$ $\left($ (d) $\right)$ $\dfrac {2329} {990}$
10th-13th grade
Other
search-thumbnail-Which of the following rational numbers are 
equivalent? 
$0Ptionsy$ 
A \frac{5}{6}, \frac{30}{36} 
B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ 
C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ 
D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo