# Calculator search results

Formula
Calculate the value
$\dfrac{ 12 }{ 1- \dfrac{ \sqrt{ 3 } }{ 3 } }$
$18 + 6 \sqrt{ 3 }$
Calculate the value
$\dfrac { 12 } { \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \sqrt{ 3 } } { 3 } } }$
 Find the sum of the fractions 
$\dfrac { 12 } { \color{#FF6800}{ \dfrac { 3 - \sqrt{ 3 } } { 3 } } }$
$\color{#FF6800}{ \dfrac { 12 } { \dfrac { 3 - \sqrt{ 3 } } { 3 } } }$
 Calculate the complex fraction 
$\color{#FF6800}{ \dfrac { 12 \times 3 } { 3 - \sqrt{ 3 } } }$
$\dfrac { \color{#FF6800}{ 12 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } } { 3 - \sqrt{ 3 } }$
 Multiply $12$ and $3$
$\dfrac { \color{#FF6800}{ 36 } } { 3 - \sqrt{ 3 } }$
$\dfrac { 36 } { 3 - \sqrt{ 3 } }$
 Find the conjugate irrational number of denominator 
$\color{#FF6800}{ \dfrac { 36 } { 3 - \sqrt{ 3 } } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 3 + \sqrt{ 3 } } { 3 + \sqrt{ 3 } } }$
$\dfrac { 36 } { 3 - \sqrt{ 3 } } \times \dfrac { 3 + \sqrt{ 3 } } { 3 + \sqrt{ 3 } }$
 The denominator is multiplied by denominator, and the numerator is multiplied by numerator 
$\color{#FF6800}{ \dfrac { 36 \left ( 3 + \sqrt{ 3 } \right ) } { \left ( 3 - \sqrt{ 3 } \right ) \left ( 3 + \sqrt{ 3 } \right ) } }$
$\dfrac { \color{#FF6800}{ 36 } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 3 } } \right ) } { \left ( 3 - \sqrt{ 3 } \right ) \left ( 3 + \sqrt{ 3 } \right ) }$
 Multiply each term in parentheses by $36$
$\dfrac { \color{#FF6800}{ 36 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 36 } \sqrt{ \color{#FF6800}{ 3 } } } { \left ( 3 - \sqrt{ 3 } \right ) \left ( 3 + \sqrt{ 3 } \right ) }$
$\dfrac { 36 \times 3 + 36 \sqrt{ 3 } } { \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 3 } } \right ) }$
 Expand the expression using $\left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\dfrac { 36 \times 3 + 36 \sqrt{ 3 } } { \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
$\dfrac { 36 \times 3 + 36 \sqrt{ 3 } } { \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } - \left ( \sqrt{ 3 } \right ) ^ { 2 } }$
 Calculate power 
$\dfrac { 36 \times 3 + 36 \sqrt{ 3 } } { \color{#FF6800}{ 9 } - \left ( \sqrt{ 3 } \right ) ^ { 2 } }$
$\dfrac { 36 \times 3 + 36 \sqrt{ 3 } } { 9 - \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
 Calculate power 
$\dfrac { 36 \times 3 + 36 \sqrt{ 3 } } { 9 - \color{#FF6800}{ 3 } }$
$\dfrac { \color{#FF6800}{ 36 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } + 36 \sqrt{ 3 } } { 9 - 3 }$
 Multiply $36$ and $3$
$\dfrac { \color{#FF6800}{ 108 } + 36 \sqrt{ 3 } } { 9 - 3 }$
$\dfrac { 108 + 36 \sqrt{ 3 } } { \color{#FF6800}{ 9 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } }$
 Subtract $3$ from $9$
$\dfrac { 108 + 36 \sqrt{ 3 } } { \color{#FF6800}{ 6 } }$
$\color{#FF6800}{ \dfrac { 108 + 36 \sqrt{ 3 } } { 6 } }$
 Reduce the fraction 
$\color{#FF6800}{ 18 } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 3 } }$
Solution search results