qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
Graph
$y = \dfrac { 10 } { x }$
$y = 0.2$
Asymptote
$y = 0$, $x = 0$
Standard form
$y = \dfrac { 10 } { x }$
Domain
$y \neq 0$
Range
$x \neq 0$
$\dfrac{ 10 }{ x } = 0.2$
$x = 50$
Solve the fractional equation
$\color{#FF6800}{ \dfrac { 10 } { x } } = \color{#FF6800}{ 0.2 }$
$ $ If $ \frac{a(x)}{b(x)} = c(x) $ is valid, it is $ \begin{cases} a(x) = b(x) c(x) \\ b(x) \ne 0 \end{cases}$
$\begin{cases} \color{#FF6800}{ 10 } = \color{#FF6800}{ x } \color{#FF6800}{ \times } \color{#FF6800}{ 0.2 } \\ \color{#FF6800}{ x } \neq \color{#FF6800}{ 0 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 10 } = \color{#FF6800}{ x } \color{#FF6800}{ \times } \color{#FF6800}{ 0.2 } \\ \color{#FF6800}{ x } \neq \color{#FF6800}{ 0 } \end{cases}$
$ $ Simplify the expression $ $
$\begin{cases} \color{#FF6800}{ 10 } = \color{#FF6800}{ \dfrac { x } { 5 } } \\ \color{#FF6800}{ x } \neq \color{#FF6800}{ 0 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 10 } = \color{#FF6800}{ \dfrac { x } { 5 } } \\ x \neq 0 \end{cases}$
$ $ Reverse the left and right terms of the equation (or inequality) $ $
$\begin{cases} \color{#FF6800}{ \dfrac { x } { 5 } } = \color{#FF6800}{ 10 } \\ x \neq 0 \end{cases}$
$\begin{cases} \color{#FF6800}{ \dfrac { x } { 5 } } = \color{#FF6800}{ 10 } \\ x \neq 0 \end{cases}$
$ $ If $ \frac{a(x)}{b(x)} = c(x) $ is valid, it is $ \begin{cases} a(x) = b(x) c(x) \\ b(x) \ne 0 \end{cases}$
$\begin{cases} \begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } \\ \color{#FF6800}{ 5 } \neq \color{#FF6800}{ 0 } \end{cases} \\ x \neq 0 \end{cases}$
$\begin{cases} \begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } \\ \color{#FF6800}{ 5 } \neq \color{#FF6800}{ 0 } \end{cases} \\ \color{#FF6800}{ x } \neq \color{#FF6800}{ 0 } \end{cases}$
$ $ If there is a system of equations (inequality) in the system of equations (inequality), take it out. $ $
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } \\ \color{#FF6800}{ 5 } \neq \color{#FF6800}{ 0 } \\ \color{#FF6800}{ x } \neq \color{#FF6800}{ 0 } \end{cases}$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } \\ \color{#FF6800}{ 5 } \neq \color{#FF6800}{ 0 } \\ \color{#FF6800}{ x } \neq \color{#FF6800}{ 0 } \end{cases}$
$ $ Substitute $ x = 5 \times 10 $ for unresolved equations or inequalities $ $
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } \\ \color{#FF6800}{ 5 } \neq \color{#FF6800}{ 0 } \\ \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } \neq \color{#FF6800}{ 0 } \end{cases}$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } \\ \color{#FF6800}{ 5 } \neq \color{#FF6800}{ 0 } \\ \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } \neq \color{#FF6800}{ 0 } \end{cases}$
$ $ Simplify the expression $ $
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 50 } \\ \color{#FF6800}{ 5 } \neq \color{#FF6800}{ 0 } \\ \color{#FF6800}{ 50 } \neq \color{#FF6800}{ 0 } \end{cases}$
$\begin{cases} x = 50 \\ \color{#FF6800}{ 5 } \neq \color{#FF6800}{ 0 } \\ 50 \neq 0 \end{cases}$
$ $ There are infinitely many solutions if both sides of $ \ne $ are different. $ $
$\begin{cases} x = 50 \\ \text{There are countless solutions} \\ 50 \neq 0 \end{cases}$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 50 } \\ \text{There are countless solutions} \\ \color{#FF6800}{ 50 } \neq \color{#FF6800}{ 0 } \end{cases}$
$ $ Ignore the cases where the system of equations where there are infinitely many solutions. $ $
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 50 } \\ \color{#FF6800}{ 50 } \neq \color{#FF6800}{ 0 } \end{cases}$
$\begin{cases} x = 50 \\ \color{#FF6800}{ 50 } \neq \color{#FF6800}{ 0 } \end{cases}$
$ $ There are infinitely many solutions if both sides of $ \ne $ are different. $ $
$\begin{cases} x = 50 \\ \text{There are countless solutions} \end{cases}$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 50 } \\ \text{There are countless solutions} \end{cases}$
$ $ Ignore the cases where the system of equations where there are infinitely many solutions. $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 50 }$
$ $ 그래프 보기 $ $
Graph
Solution search results
search-thumbnail-$11.$ Question $11$ 
Solve the $:$ $folloMlng'$ $0<θ<90^{°}$ 
$\left(1\right)$ $2sin^{2}θ=1\right)$ $\left(rac\left(3\right)\left(2\right)\right)$ 
$\left(11\right)$ $3tan^{2}θ+2=3$ 
$\left(111\right)cos^{2}θ$ $11rac\left(1\right)\left(4\right)\right)=$ 
$c\left(1\right)\left(4\right)\right)=11113c\left(1\right)\left(2\right)\right)$
10th-13th grade
Trigonometry
search-thumbnail-Which of the following rational numbers are 
equivalent? 
$0Ptionsy$ 
A \frac{5}{6}, \frac{30}{36} 
B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ 
C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ 
D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo