Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
$\dfrac{ 1 }{ xy } + \dfrac{ 1 }{ yz } + \dfrac{ 1 }{ zx }$
$\dfrac { x + y + z } { x y z }$
Arrange the rational expression
$\color{#FF6800}{ \dfrac { 1 } { x y } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 1 } { y z } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 1 } { z x } }$
$ $ Calculate the expression as a fraction format $ $
$\color{#FF6800}{ \dfrac { x + y + z } { x y z } }$
Solution search results
search-thumbnail-$1$ $1$ $-$ $1$ 
$C$ $\dfrac {1} {xy}\dfrac {a\bar{x} } {a^{\dfrac {1} {y}}}\times \dfrac {1} {yz}\dfrac {a\bar{y} } {a^{\dfrac {1} {z}}}\times \dfrac {1} {zx}\dfrac {a\bar{2} } {a^{\dfrac {1} {x}}}$
7th-9th grade
Algebra
search-thumbnail-$72.$ If $tan^{-1}x+tan^{-1}y+tan^{-1}z=0$ then the value of 
$\dfrac {1} {xy_{1}}+\dfrac {1} {yz}+\dfrac {1} {zx}$ is $\left(x,y,z≠0\right)$ 
$\left(1\right)$ Zero $\left(2\right)$ $=1$ 
$\left(3\right)$ $1$ $\left(4\right)$ $3$
10th-13th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo