# Calculator search results

Formula
Calculate the value
$\dfrac{ 1 }{ 9 } \left( 3x-18 \right) + \dfrac{ 1 }{ 3 } \left( 2x+9 \right)$
$x + 1$
Arrange the rational expression
$\color{#FF6800}{ \dfrac { 1 } { 9 } } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 18 } \right ) + \dfrac { 1 } { 3 } \left ( 2 x + 9 \right )$
 Calculate the multiplication expression 
$\color{#FF6800}{ \dfrac { x - 6 } { 3 } } + \dfrac { 1 } { 3 } \left ( 2 x + 9 \right )$
$\dfrac { x - 6 } { 3 } + \color{#FF6800}{ \dfrac { 1 } { 3 } } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \right )$
 Calculate the multiplication expression 
$\dfrac { x - 6 } { 3 } + \color{#FF6800}{ \dfrac { 2 x + 9 } { 3 } }$
$\color{#FF6800}{ \dfrac { x - 6 } { 3 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 2 x + 9 } { 3 } }$
 Calculate the expression as a fraction format 
$\color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
Solution search results