Symbol

# Calculator search results

Formula
Calculate the value
$\dfrac{ 1 }{ 8+3 \sqrt{ 7 } }$
$8 - 3 \sqrt{ 7 }$
Calculate the value
$\dfrac { 1 } { 8 + 3 \sqrt{ 7 } }$
 Find the conjugate irrational number of denominator 
$\color{#FF6800}{ \dfrac { 1 } { 8 + 3 \sqrt{ 7 } } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 8 - \left ( 3 \sqrt{ 7 } \right ) } { 8 - \left ( 3 \sqrt{ 7 } \right ) } }$
$\dfrac { 1 } { 8 + 3 \sqrt{ 7 } } \times \dfrac { 8 - \left ( 3 \sqrt{ 7 } \right ) } { 8 - \left ( 3 \sqrt{ 7 } \right ) }$
 The denominator is multiplied by denominator, and the numerator is multiplied by numerator 
$\color{#FF6800}{ \dfrac { 1 \left ( 8 - \left ( 3 \sqrt{ 7 } \right ) \right ) } { \left ( 8 + 3 \sqrt{ 7 } \right ) \left ( 8 - \left ( 3 \sqrt{ 7 } \right ) \right ) } }$
$\dfrac { \color{#FF6800}{ 1 } \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 7 } } \right ) \right ) } { \left ( 8 + 3 \sqrt{ 7 } \right ) \left ( 8 - \left ( 3 \sqrt{ 7 } \right ) \right ) }$
 Multiply each term in parentheses by $1$
$\dfrac { \color{#FF6800}{ 8 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 7 } } \right ) \right ) } { \left ( 8 + 3 \sqrt{ 7 } \right ) \left ( 8 - \left ( 3 \sqrt{ 7 } \right ) \right ) }$
$\dfrac { 8 + 1 \times \left ( - \left ( 3 \sqrt{ 7 } \right ) \right ) } { \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 7 } } \right ) \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 7 } } \right ) \right ) }$
 Expand the expression using $\left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\dfrac { 8 + 1 \times \left ( - \left ( 3 \sqrt{ 7 } \right ) \right ) } { \color{#FF6800}{ 8 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 7 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
$\dfrac { 8 + 1 \times \left ( - \left ( 3 \sqrt{ 7 } \right ) \right ) } { \color{#FF6800}{ 8 } ^ { \color{#FF6800}{ 2 } } - \left ( 3 \sqrt{ 7 } \right ) ^ { 2 } }$
 Calculate power 
$\dfrac { 8 + 1 \times \left ( - \left ( 3 \sqrt{ 7 } \right ) \right ) } { \color{#FF6800}{ 64 } - \left ( 3 \sqrt{ 7 } \right ) ^ { 2 } }$
$\dfrac { 8 + 1 \times \left ( - \left ( 3 \sqrt{ 7 } \right ) \right ) } { 64 - \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 7 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
 Calculate power 
$\dfrac { 8 + 1 \times \left ( - \left ( 3 \sqrt{ 7 } \right ) \right ) } { 64 - \color{#FF6800}{ 63 } }$
$\dfrac { 8 + \color{#FF6800}{ 1 } \times \left ( - \left ( 3 \sqrt{ 7 } \right ) \right ) } { 64 - 63 }$
 Multiplying any number by 1 does not change the value 
$\dfrac { 8 - \left ( 3 \sqrt{ 7 } \right ) } { 64 - 63 }$
$\dfrac { 8 - \left ( 3 \sqrt{ 7 } \right ) } { \color{#FF6800}{ 64 } \color{#FF6800}{ - } \color{#FF6800}{ 63 } }$
 Subtract $63$ from $64$
$\dfrac { 8 - \left ( 3 \sqrt{ 7 } \right ) } { \color{#FF6800}{ 1 } }$
$\dfrac { 8 - \left ( 3 \sqrt{ 7 } \right ) } { \color{#FF6800}{ 1 } }$
 If the denominator is 1, the denominator can be removed 
$\color{#FF6800}{ 8 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 7 } } \right )$
$8 \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 7 } } \right )$
 Get rid of unnecessary parentheses 
$8 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 7 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture