# Calculator search results

Formula
Solve the equation
Graph
$y = \dfrac { 1 } { 5 } x + 0.1$
$y = - 0.5 x + \dfrac { 3 } { 2 }$
$x$-intercept
$\left ( - \dfrac { 1 } { 2 } , 0 \right )$
$y$-intercept
$\left ( 0 , \dfrac { 1 } { 10 } \right )$
$x$-intercept
$\left ( 3 , 0 \right )$
$y$-intercept
$\left ( 0 , \dfrac { 3 } { 2 } \right )$
$\dfrac{ 1 }{ 5 } x+0.1 = -0.5x+ \dfrac{ 3 }{ 2 }$
$x = 2$
 Solve a solution to $x$
$\color{#FF6800}{ \dfrac { 1 } { 5 } } \color{#FF6800}{ x } + 0.1 = - 0.5 x + \dfrac { 3 } { 2 }$
 Calculate the multiplication expression 
$\color{#FF6800}{ \dfrac { x } { 5 } } + 0.1 = - 0.5 x + \dfrac { 3 } { 2 }$
$\dfrac { x } { 5 } + \color{#FF6800}{ 0.1 } = - 0.5 x + \dfrac { 3 } { 2 }$
 Convert decimals to fractions 
$\dfrac { x } { 5 } + \color{#FF6800}{ \dfrac { 1 } { 10 } } = - 0.5 x + \dfrac { 3 } { 2 }$
$\dfrac { x } { 5 } + \dfrac { 1 } { 10 } = \color{#FF6800}{ - } \color{#FF6800}{ 0.5 } \color{#FF6800}{ x } + \dfrac { 3 } { 2 }$
 Calculate the multiplication expression 
$\dfrac { x } { 5 } + \dfrac { 1 } { 10 } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { x } { 2 } } + \dfrac { 3 } { 2 }$
$\color{#FF6800}{ \dfrac { x } { 5 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 1 } { 10 } } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { x } { 2 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 3 } { 2 } }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } = \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 15 }$
$2 x + 1 = \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } + 15$
 Move the variable to the left-hand side and change the symbol 
$2 x + 1 \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ x } = 15$
$2 x \color{#FF6800}{ + } \color{#FF6800}{ 1 } + 5 x = 15$
 Move the constant to the right side and change the sign 
$2 x + 5 x = 15 \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ x } = 15 - 1$
 Organize the expression 
$\color{#FF6800}{ 7 } \color{#FF6800}{ x } = 15 - 1$
$7 x = \color{#FF6800}{ 15 } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
 Subtract $1$ from $15$
$7 x = \color{#FF6800}{ 14 }$
$\color{#FF6800}{ 7 } \color{#FF6800}{ x } = \color{#FF6800}{ 14 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ 2 }$
 그래프 보기 
Graph
Solution search results