Symbol

# Calculator search results

Formula
Solve the inequality
Graph
$\dfrac { 1 } { 4 } x + 0.6 \geq 0.2 x - \dfrac { 1 } { 5 }$
$\dfrac { 1 } { 4 } x + 0.6 \geq 0.2 x - \dfrac { 1 } { 5 }$
Solution of inequality
$x \geq - 16$
$\dfrac{ 1 }{ 4 } x+0.6 \geq 0.2x- \dfrac{ 1 }{ 5 }$
$x \geq - 16$
 Solve a solution to $x$
$\color{#FF6800}{ \dfrac { 1 } { 4 } } \color{#FF6800}{ x } + 0.6 \geq 0.2 x - \dfrac { 1 } { 5 }$
 Calculate the multiplication expression 
$\color{#FF6800}{ \dfrac { x } { 4 } } + 0.6 \geq 0.2 x - \dfrac { 1 } { 5 }$
$\dfrac { x } { 4 } + \color{#FF6800}{ 0.6 } \geq 0.2 x - \dfrac { 1 } { 5 }$
 Convert decimals to fractions 
$\dfrac { x } { 4 } + \color{#FF6800}{ \dfrac { 3 } { 5 } } \geq 0.2 x - \dfrac { 1 } { 5 }$
$\dfrac { x } { 4 } + \dfrac { 3 } { 5 } \geq \color{#FF6800}{ 0.2 } \color{#FF6800}{ x } - \dfrac { 1 } { 5 }$
 Calculate the multiplication expression 
$\dfrac { x } { 4 } + \dfrac { 3 } { 5 } \geq \color{#FF6800}{ \dfrac { x } { 5 } } - \dfrac { 1 } { 5 }$
$\color{#FF6800}{ \dfrac { x } { 4 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 3 } { 5 } } \geq \color{#FF6800}{ \dfrac { x } { 5 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 5 } }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 12 } \geq \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$5 x + 12 \geq \color{#FF6800}{ 4 } \color{#FF6800}{ x } - 4$
 Move the variable to the left-hand side and change the symbol 
$5 x + 12 \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \geq - 4$
$5 x \color{#FF6800}{ + } \color{#FF6800}{ 12 } - 4 x \geq - 4$
 Move the constant to the right side and change the sign 
$5 x - 4 x \geq - 4 \color{#FF6800}{ - } \color{#FF6800}{ 12 }$
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \geq - 4 - 12$
 Organize the expression 
$\color{#FF6800}{ x } \geq - 4 - 12$
$x \geq \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 12 }$
 Find the sum of the negative numbers 
$x \geq \color{#FF6800}{ - } \color{#FF6800}{ 16 }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture