$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 4 } } } \color{#FF6800}{ x } + 0.6 \geq 0.2 x - \dfrac { 1 } { 5 }$
$ $ Calculate the multiplication expression $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ x } } { \color{#FF6800}{ 4 } } } + 0.6 \geq 0.2 x - \dfrac { 1 } { 5 }$
$\dfrac { x } { 4 } + \color{#FF6800}{ 0.6 } \geq 0.2 x - \dfrac { 1 } { 5 }$
$ $ Convert decimals to fractions $ $
$\dfrac { x } { 4 } + \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 5 } } } \geq 0.2 x - \dfrac { 1 } { 5 }$
$\dfrac { x } { 4 } + \dfrac { 3 } { 5 } \geq \color{#FF6800}{ 0.2 } \color{#FF6800}{ x } - \dfrac { 1 } { 5 }$
$ $ Calculate the multiplication expression $ $
$\dfrac { x } { 4 } + \dfrac { 3 } { 5 } \geq \color{#FF6800}{ \dfrac { \color{#FF6800}{ x } } { \color{#FF6800}{ 5 } } } - \dfrac { 1 } { 5 }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ x } } { \color{#FF6800}{ 4 } } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 5 } } } \geq \color{#FF6800}{ \dfrac { \color{#FF6800}{ x } } { \color{#FF6800}{ 5 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 5 } } }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 12 } \geq \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$5 x + 12 \geq \color{#FF6800}{ 4 } \color{#FF6800}{ x } - 4$
$ $ Move the variable to the left-hand side and change the symbol $ $
$5 x + 12 \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \geq - 4$
$5 x \color{#FF6800}{ + } \color{#FF6800}{ 12 } - 4 x \geq - 4$
$ $ Move the constant to the right side and change the sign $ $
$5 x - 4 x \geq - 4 \color{#FF6800}{ - } \color{#FF6800}{ 12 }$
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \geq - 4 - 12$
$ $ Organize the expression $ $
$\color{#FF6800}{ x } \geq - 4 - 12$
$x \geq \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 12 }$
$ $ Find the sum of the negative numbers $ $
$x \geq \color{#FF6800}{ - } \color{#FF6800}{ 16 }$