$\dfrac { 1 } { \color{#FF6800}{ 4 } } + \dfrac { 4 } { \color{#FF6800}{ 5 } }$
$ $ The smallest common multiple in denominator is $ 20$
$\dfrac { 1 } { \color{#FF6800}{ 4 } } + \dfrac { 4 } { \color{#FF6800}{ 5 } }$
$\dfrac { 1 } { 4 } + \dfrac { 4 } { 5 }$
$ $ Multiply the denominator and the numerator so that the denominator is the smallest common multiple $ $
$\dfrac { 1 \times \color{#FF6800}{ 5 } } { 4 \times \color{#FF6800}{ 5 } } + \dfrac { 4 \times \color{#FF6800}{ 4 } } { 5 \times \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } } { \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } } { \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 5 } } { \color{#FF6800}{ 20 } } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 16 } } { \color{#FF6800}{ 20 } } }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 5 } } { \color{#FF6800}{ 20 } } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 16 } } { \color{#FF6800}{ 20 } } }$
$ $ Since the denominator is the same as $ 20 $ , combine the fractions into one $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 5 } \color{#FF6800}{ + } \color{#FF6800}{ 16 } } { \color{#FF6800}{ 20 } } }$
$\dfrac { \color{#FF6800}{ 5 } \color{#FF6800}{ + } \color{#FF6800}{ 16 } } { 20 }$
$ $ Add $ 5 $ and $ 16$
$\dfrac { \color{#FF6800}{ 21 } } { 20 }$