# Calculator search results

Formula
Solve the equation
Graph
$y = \dfrac { 1 } { 2 } x + \dfrac { 4 } { 3 } x$
$y = 33$
$x$-intercept
$\left ( 0 , 0 \right )$
$y$-intercept
$\left ( 0 , 0 \right )$
$\dfrac{ 1 }{ 2 } x+ \dfrac{ 4 }{ 3 } x = 33$
$x = 18$
 Solve a solution to $x$
$\color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ x } + \dfrac { 4 } { 3 } x = 33$
 Calculate the multiplication expression 
$\color{#FF6800}{ \dfrac { x } { 2 } } + \dfrac { 4 } { 3 } x = 33$
$\dfrac { x } { 2 } + \color{#FF6800}{ \dfrac { 4 } { 3 } } \color{#FF6800}{ x } = 33$
 Calculate the multiplication expression 
$\dfrac { x } { 2 } + \color{#FF6800}{ \dfrac { 4 x } { 3 } } = 33$
$\color{#FF6800}{ \dfrac { x } { 2 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 4 x } { 3 } } = 33$
 Write all numerators above the least common denominator 
$\color{#FF6800}{ \dfrac { 3 x + 8 x } { 6 } } = 33$
$\dfrac { \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ x } } { 6 } = 33$
 Calculate between similar terms 
$\dfrac { \color{#FF6800}{ 11 } \color{#FF6800}{ x } } { 6 } = 33$
$\color{#FF6800}{ \dfrac { 11 x } { 6 } } = \color{#FF6800}{ 33 }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 11 } \color{#FF6800}{ x } = \color{#FF6800}{ 198 }$
$\color{#FF6800}{ 11 } \color{#FF6800}{ x } = \color{#FF6800}{ 198 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ 18 }$
 그래프 보기 
Graph
Solution search results