$\dfrac { 1 } { 2 } x + \dfrac { 1 } { 5 } = \color{#FF6800}{ 0.1 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
$ $ Multiply each term in parentheses by $ 0.1$
$\dfrac { 1 } { 2 } x + \dfrac { 1 } { 5 } = \color{#FF6800}{ 0.1 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 0.1 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
$\color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ x } + \dfrac { 1 } { 5 } = 0.1 x + 0.1 \times \left ( - 2 \right )$
$ $ Calculate the multiplication expression $ $
$\color{#FF6800}{ \dfrac { x } { 2 } } + \dfrac { 1 } { 5 } = 0.1 x + 0.1 \times \left ( - 2 \right )$
$\dfrac { x } { 2 } + \dfrac { 1 } { 5 } = \color{#FF6800}{ 0.1 } \color{#FF6800}{ x } + 0.1 \times \left ( - 2 \right )$
$ $ Calculate the multiplication expression $ $
$\dfrac { x } { 2 } + \dfrac { 1 } { 5 } = \color{#FF6800}{ \dfrac { x } { 10 } } + 0.1 \times \left ( - 2 \right )$
$\dfrac { x } { 2 } + \dfrac { 1 } { 5 } = \dfrac { x } { 10 } + \color{#FF6800}{ 0.1 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
$ $ Multiply $ 0.1 $ and $ - 2$
$\dfrac { x } { 2 } + \dfrac { 1 } { 5 } = \dfrac { x } { 10 } \color{#FF6800}{ - } \color{#FF6800}{ 0.2 }$
$\dfrac { x } { 2 } + \dfrac { 1 } { 5 } = \dfrac { x } { 10 } \color{#FF6800}{ - } \color{#FF6800}{ 0.2 }$
$ $ Convert decimals to fractions $ $
$\dfrac { x } { 2 } + \dfrac { 1 } { 5 } = \dfrac { x } { 10 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 5 } }$
$\color{#FF6800}{ \dfrac { x } { 2 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 1 } { 5 } } = \color{#FF6800}{ \dfrac { x } { 10 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 5 } }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } = \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } = \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$ $ Organize the expression $ $
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ x } = - 2 - 2$
$ $ Organize the expression $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } = - 2 - 2$
$4 x = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$ $ Find the sum of the negative numbers $ $
$4 x = \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 1 }$