Symbol

# Calculator search results

Formula
Solve the equation
Graph
$y = \dfrac { 1 } { 2 } \left ( 6 x - 1 \right )$
$y = \dfrac { 1 } { 7 } \left ( 5 + 4 x \right )$
$x$Intercept
$\left ( \dfrac { 1 } { 6 } , 0 \right )$
$y$Intercept
$\left ( 0 , - \dfrac { 1 } { 2 } \right )$
$x$Intercept
$\left ( - \dfrac { 5 } { 4 } , 0 \right )$
$y$Intercept
$\left ( 0 , \dfrac { 5 } { 7 } \right )$
$\dfrac{ 1 }{ 2 } \left( 6x-1 \right) = \dfrac{ 1 }{ 7 } \left( 5+4x \right)$
$x = \dfrac { 1 } { 2 }$
 Solve a solution to $x$
$\color{#FF6800}{ \dfrac { 1 } { 2 } } \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) = \color{#FF6800}{ \dfrac { 1 } { 7 } } \left ( \color{#FF6800}{ 5 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \right )$
 Organize the expression 
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 2 } } = \color{#FF6800}{ \dfrac { 1 } { 7 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 1 } { 7 } } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \color{#FF6800}{ x }$
$3 x - \dfrac { 1 } { 2 } = \color{#FF6800}{ \dfrac { 1 } { 7 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } + \dfrac { 1 } { 7 } \times 4 x$
 Calculate the product of rational numbers 
$3 x - \dfrac { 1 } { 2 } = \color{#FF6800}{ \dfrac { 5 } { 7 } } + \dfrac { 1 } { 7 } \times 4 x$
$3 x - \dfrac { 1 } { 2 } = \dfrac { 5 } { 7 } + \color{#FF6800}{ \dfrac { 1 } { 7 } } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \color{#FF6800}{ x }$
 Simplify the expression 
$3 x - \dfrac { 1 } { 2 } = \dfrac { 5 } { 7 } + \color{#FF6800}{ \dfrac { 4 } { 7 } } \color{#FF6800}{ x }$
$3 x - \dfrac { 1 } { 2 } = \dfrac { 5 } { 7 } + \color{#FF6800}{ \dfrac { 4 } { 7 } } \color{#FF6800}{ x }$
 Calculate the multiplication expression 
$3 x - \dfrac { 1 } { 2 } = \dfrac { 5 } { 7 } + \color{#FF6800}{ \dfrac { 4 x } { 7 } }$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 2 } } = \color{#FF6800}{ \dfrac { 5 } { 7 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 4 x } { 7 } }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 21 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 7 } { 2 } } = \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 }$
$\color{#FF6800}{ 21 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 7 } { 2 } } = \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 }$
 Organize the expression 
$\color{#FF6800}{ 21 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } = \color{#FF6800}{ 5 } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 7 } { 2 } }$
$\color{#FF6800}{ 21 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } = 5 + \dfrac { 7 } { 2 }$
 Organize the expression 
$\color{#FF6800}{ 17 } \color{#FF6800}{ x } = 5 + \dfrac { 7 } { 2 }$
$17 x = \color{#FF6800}{ 5 } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 7 } { 2 } }$
 Add two numbers $5$ and $\dfrac { 7 } { 2 }$
$17 x = \color{#FF6800}{ \dfrac { 17 } { 2 } }$
$\color{#FF6800}{ 17 } \color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 17 } { 2 } }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 1 } { 2 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture