Symbol

# Calculator search results

Formula
Calculate the value
$\dfrac{ 1 }{ 1- \dfrac{ 1 }{ 1- \dfrac{ 1 }{ x } } }$
$- x + 1$
Arrange the rational expression
$\color{#FF6800}{ \dfrac { 1 } { 1 - \dfrac { 1 } { 1 - \dfrac { 1 } { x } } } }$
 Convert a fraction to a division 
$\color{#FF6800}{ 1 } \color{#FF6800}{ \div } \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 1 - \dfrac { 1 } { x } } } \right )$
$1 \div \left ( 1 - \color{#FF6800}{ \dfrac { 1 } { 1 - \dfrac { 1 } { x } } } \right )$
 Convert a fraction to a division 
$1 \div \left ( 1 - \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ \div } \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { x } } \right ) \right ) \right )$
$1 \div \left ( 1 - \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ \div } \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { x } } \right ) \right ) \right )$
 Calculate the multiplication expression 
$1 \div \left ( 1 - \color{#FF6800}{ \dfrac { x } { x - 1 } } \right )$
$1 \div \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { x } { x - 1 } } \right )$
 Calculate the expression as a fraction format 
$1 \div \left ( \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { x - 1 } } \right )$
$\color{#FF6800}{ 1 } \color{#FF6800}{ \div } \left ( \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { x - 1 } } \right )$
 Calculate the multiplication expression 
$\color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture