Calculator search results
Formula
Calculate the value
Answer
See the solving process
$\dfrac{ 1 }{ \sqrt{ 8 } } - \dfrac{ 1 }{ \sqrt{ 2 } } + \dfrac{ \sqrt{ 2 } }{ 3 }$
$\dfrac { \sqrt{ 2 } } { 12 }$
Calculate the value
$\color{#FF6800}{ \dfrac { 1 } { \sqrt{ 8 } } } - \dfrac { 1 } { \sqrt{ 2 } } + \dfrac { \sqrt{ 2 } } { 3 }$
$ $ Calculate the expression $ $
$\color{#FF6800}{ \dfrac { \sqrt{ 2 } } { 4 } } - \dfrac { 1 } { \sqrt{ 2 } } + \dfrac { \sqrt{ 2 } } { 3 }$
$\dfrac { \sqrt{ 2 } } { 4 } - \color{#FF6800}{ \dfrac { 1 } { \sqrt{ 2 } } } + \dfrac { \sqrt{ 2 } } { 3 }$
$ $ Calculate the expression $ $
$\dfrac { \sqrt{ 2 } } { 4 } - \color{#FF6800}{ \dfrac { \sqrt{ 2 } } { 2 } } + \dfrac { \sqrt{ 2 } } { 3 }$
$\color{#FF6800}{ \dfrac { \sqrt{ 2 } } { 4 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \sqrt{ 2 } } { 2 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \sqrt{ 2 } } { 3 } }$
$ $ Write all numerators above the least common denominator $ $
$\color{#FF6800}{ \dfrac { 3 \sqrt{ 2 } - 6 \sqrt{ 2 } + 4 \sqrt{ 2 } } { 12 } }$
$\dfrac { \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 2 } } } { 12 }$
$ $ Calculate between similar terms $ $
$\dfrac { \color{#FF6800}{ 1 } \sqrt{ \color{#FF6800}{ 2 } } } { 12 }$
$\dfrac { \color{#FF6800}{ 1 } \sqrt{ 2 } } { 12 }$
$ $ Multiplying any number by 1 does not change the value $ $
$\dfrac { \sqrt{ 2 } } { 12 }$
Solution search results
Calculus
Check solution
Other
Check solution
Other
Check solution
1st-6th grade
Other
Check solution
Calculus
Check solution
10th-13th grade
Trigonometry
Check solution
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture