Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$\dfrac{ 1 }{ \sqrt{ 6 } + \sqrt{ 2 } } - \dfrac{ \sqrt{ 3 } }{ \sqrt{ 6 } - \sqrt{ 2 } }$
$- \sqrt{ 2 }$
Calculate the value
$\dfrac { 1 } { \sqrt{ 6 } + \sqrt{ 2 } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } }$
$ $ Find the conjugate irrational number of denominator $ $
$\color{#FF6800}{ \dfrac { 1 } { \sqrt{ 6 } + \sqrt{ 2 } } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { \sqrt{ 6 } - \sqrt{ 2 } } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } }$
$\dfrac { 1 } { \sqrt{ 6 } + \sqrt{ 2 } } \times \dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { \sqrt{ 6 } - \sqrt{ 2 } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } }$
$ $ The denominator is multiplied by denominator, and the numerator is multiplied by numerator $ $
$\color{#FF6800}{ \dfrac { 1 \left ( \sqrt{ 6 } - \sqrt{ 2 } \right ) } { \left ( \sqrt{ 6 } + \sqrt{ 2 } \right ) \left ( \sqrt{ 6 } - \sqrt{ 2 } \right ) } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } }$
$\dfrac { \color{#FF6800}{ 1 } \left ( \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right ) } { \left ( \sqrt{ 6 } + \sqrt{ 2 } \right ) \left ( \sqrt{ 6 } - \sqrt{ 2 } \right ) } - \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } }$
$ $ Multiply each term in parentheses by $ 1$
$\dfrac { \color{#FF6800}{ 1 } \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right ) } { \left ( \sqrt{ 6 } + \sqrt{ 2 } \right ) \left ( \sqrt{ 6 } - \sqrt{ 2 } \right ) } - \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } }$
$\dfrac { 1 \sqrt{ 6 } + 1 \times \left ( - \sqrt{ 2 } \right ) } { \left ( \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } \right ) \left ( \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right ) } - \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } }$
$ $ Expand the expression using $ \left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\dfrac { 1 \sqrt{ 6 } + 1 \times \left ( - \sqrt{ 2 } \right ) } { \left ( \sqrt{ \color{#FF6800}{ 6 } } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } }$
$\dfrac { 1 \sqrt{ 6 } + 1 \times \left ( - \sqrt{ 2 } \right ) } { \left ( \sqrt{ \color{#FF6800}{ 6 } } \right ) ^ { \color{#FF6800}{ 2 } } - \left ( \sqrt{ 2 } \right ) ^ { 2 } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } }$
$ $ Calculate power $ $
$\dfrac { 1 \sqrt{ 6 } + 1 \times \left ( - \sqrt{ 2 } \right ) } { \color{#FF6800}{ 6 } - \left ( \sqrt{ 2 } \right ) ^ { 2 } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } }$
$\dfrac { 1 \sqrt{ 6 } + 1 \times \left ( - \sqrt{ 2 } \right ) } { 6 - \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } }$
$ $ Calculate power $ $
$\dfrac { 1 \sqrt{ 6 } + 1 \times \left ( - \sqrt{ 2 } \right ) } { 6 - \color{#FF6800}{ 2 } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } }$
$\dfrac { \color{#FF6800}{ 1 } \sqrt{ 6 } + 1 \times \left ( - \sqrt{ 2 } \right ) } { 6 - 2 } - \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } }$
$ $ Multiplying any number by 1 does not change the value $ $
$\dfrac { \sqrt{ 6 } + 1 \times \left ( - \sqrt{ 2 } \right ) } { 6 - 2 } - \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } }$
$\dfrac { \sqrt{ 6 } + \color{#FF6800}{ 1 } \times \left ( - \sqrt{ 2 } \right ) } { 6 - 2 } - \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } }$
$ $ Multiplying any number by 1 does not change the value $ $
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 6 - 2 } - \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } }$
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } }$
$ $ Subtract $ 2 $ from $ 6$
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { \color{#FF6800}{ 4 } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } }$
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } }$
$ $ Find the conjugate irrational number of denominator $ $
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \left ( \color{#FF6800}{ \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { \sqrt{ 6 } + \sqrt{ 2 } } { \sqrt{ 6 } + \sqrt{ 2 } } } \right )$
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \left ( \dfrac { \sqrt{ 3 } } { \sqrt{ 6 } - \sqrt{ 2 } } \times \dfrac { \sqrt{ 6 } + \sqrt{ 2 } } { \sqrt{ 6 } + \sqrt{ 2 } } \right )$
$ $ The denominator is multiplied by denominator, and the numerator is multiplied by numerator $ $
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \color{#FF6800}{ \dfrac { \sqrt{ 3 } \left ( \sqrt{ 6 } + \sqrt{ 2 } \right ) } { \left ( \sqrt{ 6 } - \sqrt{ 2 } \right ) \left ( \sqrt{ 6 } + \sqrt{ 2 } \right ) } }$
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \sqrt{ \color{#FF6800}{ 3 } } \left ( \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } \right ) } { \left ( \sqrt{ 6 } - \sqrt{ 2 } \right ) \left ( \sqrt{ 6 } + \sqrt{ 2 } \right ) }$
$ $ Multiply each term in parentheses by $ \sqrt{ 3 }$
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 2 } } } { \left ( \sqrt{ 6 } - \sqrt{ 2 } \right ) \left ( \sqrt{ 6 } + \sqrt{ 2 } \right ) }$
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \sqrt{ 3 } \sqrt{ 6 } + \sqrt{ 3 } \sqrt{ 2 } } { \left ( \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right ) \left ( \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } \right ) }$
$ $ Expand the expression using $ \left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \sqrt{ 3 } \sqrt{ 6 } + \sqrt{ 3 } \sqrt{ 2 } } { \left ( \sqrt{ \color{#FF6800}{ 6 } } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 6 } } + \sqrt{ 3 } \sqrt{ 2 } } { \left ( \sqrt{ 6 } \right ) ^ { 2 } - \left ( \sqrt{ 2 } \right ) ^ { 2 } }$
$ $ Arrange the expression $ $
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \sqrt{ \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 } } + \sqrt{ 3 } \sqrt{ 2 } } { \left ( \sqrt{ 6 } \right ) ^ { 2 } - \left ( \sqrt{ 2 } \right ) ^ { 2 } }$
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \sqrt{ 3 \times 6 } + \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 2 } } } { \left ( \sqrt{ 6 } \right ) ^ { 2 } - \left ( \sqrt{ 2 } \right ) ^ { 2 } }$
$ $ Arrange the expression $ $
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \sqrt{ 3 \times 6 } + \sqrt{ \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } } { \left ( \sqrt{ 6 } \right ) ^ { 2 } - \left ( \sqrt{ 2 } \right ) ^ { 2 } }$
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \sqrt{ 3 \times 6 } + \sqrt{ 3 \times 2 } } { \left ( \sqrt{ \color{#FF6800}{ 6 } } \right ) ^ { \color{#FF6800}{ 2 } } - \left ( \sqrt{ 2 } \right ) ^ { 2 } }$
$ $ Calculate power $ $
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \sqrt{ 3 \times 6 } + \sqrt{ 3 \times 2 } } { \color{#FF6800}{ 6 } - \left ( \sqrt{ 2 } \right ) ^ { 2 } }$
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \sqrt{ 3 \times 6 } + \sqrt{ 3 \times 2 } } { 6 - \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
$ $ Calculate power $ $
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \sqrt{ 3 \times 6 } + \sqrt{ 3 \times 2 } } { 6 - \color{#FF6800}{ 2 } }$
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \sqrt{ \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 } } + \sqrt{ 3 \times 2 } } { 6 - 2 }$
$ $ Multiply $ 3 $ and $ 6$
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \sqrt{ \color{#FF6800}{ 18 } } + \sqrt{ 3 \times 2 } } { 6 - 2 }$
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \sqrt{ 18 } + \sqrt{ \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } } { 6 - 2 }$
$ $ Multiply $ 3 $ and $ 2$
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \sqrt{ 18 } + \sqrt{ \color{#FF6800}{ 6 } } } { 6 - 2 }$
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \sqrt{ 18 } + \sqrt{ 6 } } { \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } }$
$ $ Subtract $ 2 $ from $ 6$
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \sqrt{ 18 } + \sqrt{ 6 } } { \color{#FF6800}{ 4 } }$
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \sqrt{ \color{#FF6800}{ 18 } } + \sqrt{ 6 } } { 4 }$
$ $ Organize the part that can be taken out of the radical sign inside the square root symbol $ $
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } - \dfrac { \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } + \sqrt{ 6 } } { 4 }$
$\color{#FF6800}{ \dfrac { \sqrt{ 6 } - \sqrt{ 2 } } { 4 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 \sqrt{ 2 } + \sqrt{ 6 } } { 4 } }$
$ $ Combine the fraction with the same denominator $ $
$\dfrac { \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 6 } } \right ) } { 4 }$
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 6 } } \right ) } { 4 }$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$\dfrac { \sqrt{ 6 } - \sqrt{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 6 } } } { 4 }$
$\dfrac { \sqrt{ \color{#FF6800}{ 6 } } - \sqrt{ 2 } - 3 \sqrt{ 2 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 6 } } } { 4 }$
$ $ Remove the two numbers if the values are the same and the signs are different $ $
$\dfrac { - \sqrt{ 2 } - 3 \sqrt{ 2 } } { 4 }$
$\dfrac { \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } } { 4 }$
$ $ Calculate between similar terms $ $
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 2 } } } { 4 }$
$\color{#FF6800}{ \dfrac { - 4 \sqrt{ 2 } } { 4 } }$
$ $ Reduce the fraction $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 1 } \sqrt{ \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ 1 } \sqrt{ 2 }$
$ $ Multiplying any number by 1 does not change the value $ $
$- \sqrt{ 2 }$
Solution search results
search-thumbnail-Question $4$ 
If $x$ is $6$ what $|s$ 
$\dfrac {1} {3}x$ 
$1frac\left(1\right)\left(3\right)x$
1st-6th grade
Other
search-thumbnail-$11.$ Question $11$ 
Solve the $:$ $folloMlng'$ $0<θ<90^{°}$ 
$\left(1\right)$ $2sin^{2}θ=1\right)$ $\left(rac\left(3\right)\left(2\right)\right)$ 
$\left(11\right)$ $3tan^{2}θ+2=3$ 
$\left(111\right)cos^{2}θ$ $11rac\left(1\right)\left(4\right)\right)=$ 
$c\left(1\right)\left(4\right)\right)=11113c\left(1\right)\left(2\right)\right)$
10th-13th grade
Trigonometry
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo