Calculator search results
Formula
Calculate the value
Answer
See the solving process
$\dfrac{ \sqrt{ 45 } +2 }{ \sqrt{ 5 } } - \sqrt{ 5 }$
$\dfrac { 15 - 3 \sqrt{ 5 } } { 5 }$
Calculate the value
$\color{#FF6800}{ \dfrac { \sqrt{ 45 } + 2 } { \sqrt{ 5 } } } - \sqrt{ 5 }$
$ $ Calculate the expression $ $
$\color{#FF6800}{ \dfrac { 15 + 2 \sqrt{ 5 } } { 5 } } - \sqrt{ 5 }$
$\color{#FF6800}{ \dfrac { 15 + 2 \sqrt{ 5 } } { 5 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 5 } }$
$ $ Find the sum of the fractions $ $
$\color{#FF6800}{ \dfrac { 15 + 2 \sqrt{ 5 } - 5 \sqrt{ 5 } } { 5 } }$
$\dfrac { 15 + \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 5 } } } { 5 }$
$ $ Calculate between similar terms $ $
$\dfrac { 15 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } } { 5 }$
Solution search results
Calculus
Check solution
Other
Check solution
Other
Check solution
7th-9th grade
Other
Check solution
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture