Symbol

# Calculator search results

Formula
Calculate the value
$\dfrac{ \sqrt{ 3 } +2 }{ \sqrt{ 3 } -2 }$
$- 7 - 4 \sqrt{ 3 }$
Calculate the value
$\dfrac { \sqrt{ 3 } + 2 } { \sqrt{ 3 } - 2 }$
 Find the conjugate irrational number of denominator 
$\color{#FF6800}{ \dfrac { \sqrt{ 3 } + 2 } { \sqrt{ 3 } - 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { \sqrt{ 3 } + 2 } { \sqrt{ 3 } + 2 } }$
$\dfrac { \sqrt{ 3 } + 2 } { \sqrt{ 3 } - 2 } \times \dfrac { \sqrt{ 3 } + 2 } { \sqrt{ 3 } + 2 }$
 The denominator is multiplied by denominator, and the numerator is multiplied by numerator 
$\color{#FF6800}{ \dfrac { \left ( \sqrt{ 3 } + 2 \right ) \left ( \sqrt{ 3 } + 2 \right ) } { \left ( \sqrt{ 3 } - 2 \right ) \left ( \sqrt{ 3 } + 2 \right ) } }$
$\dfrac { \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) } { \left ( \sqrt{ 3 } - 2 \right ) \left ( \sqrt{ 3 } + 2 \right ) }$
 Expand using $\left(a + b\right)\left(c + d\right) = ac + ad + bc + bd$
$\dfrac { \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } { \left ( \sqrt{ 3 } - 2 \right ) \left ( \sqrt{ 3 } + 2 \right ) }$
$\dfrac { \sqrt{ 3 } \sqrt{ 3 } + \sqrt{ 3 } \times 2 + 2 \sqrt{ 3 } + 2 \times 2 } { \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) }$
 Expand the expression using $\left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\dfrac { \sqrt{ 3 } \sqrt{ 3 } + \sqrt{ 3 } \times 2 + 2 \sqrt{ 3 } + 2 \times 2 } { \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } }$
$\dfrac { \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 3 } } + \sqrt{ 3 } \times 2 + 2 \sqrt{ 3 } + 2 \times 2 } { \left ( \sqrt{ 3 } \right ) ^ { 2 } - 2 ^ { 2 } }$
 Arrange the expression 
$\dfrac { \sqrt{ \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } } + \sqrt{ 3 } \times 2 + 2 \sqrt{ 3 } + 2 \times 2 } { \left ( \sqrt{ 3 } \right ) ^ { 2 } - 2 ^ { 2 } }$
$\dfrac { \sqrt{ 3 \times 3 } + \sqrt{ 3 } \times 2 + 2 \sqrt{ 3 } + 2 \times 2 } { \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } - 2 ^ { 2 } }$
 Calculate power 
$\dfrac { \sqrt{ 3 \times 3 } + \sqrt{ 3 } \times 2 + 2 \sqrt{ 3 } + 2 \times 2 } { \color{#FF6800}{ 3 } - 2 ^ { 2 } }$
$\dfrac { \sqrt{ 3 \times 3 } + \sqrt{ 3 } \times 2 + 2 \sqrt{ 3 } + 2 \times 2 } { 3 - \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } }$
 Calculate power 
$\dfrac { \sqrt{ 3 \times 3 } + \sqrt{ 3 } \times 2 + 2 \sqrt{ 3 } + 2 \times 2 } { 3 - \color{#FF6800}{ 4 } }$
$\dfrac { \sqrt{ \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } } + \sqrt{ 3 } \times 2 + 2 \sqrt{ 3 } + 2 \times 2 } { 3 - 4 }$
 Multiply $3$ and $3$
$\dfrac { \sqrt{ \color{#FF6800}{ 9 } } + \sqrt{ 3 } \times 2 + 2 \sqrt{ 3 } + 2 \times 2 } { 3 - 4 }$
$\dfrac { \sqrt{ 9 } + \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } + 2 \sqrt{ 3 } + 2 \times 2 } { 3 - 4 }$
 Simplify the expression 
$\dfrac { \sqrt{ 9 } + \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } + 2 \sqrt{ 3 } + 2 \times 2 } { 3 - 4 }$
$\dfrac { \sqrt{ 9 } + 2 \sqrt{ 3 } + 2 \sqrt{ 3 } + \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } { 3 - 4 }$
 Multiply $2$ and $2$
$\dfrac { \sqrt{ 9 } + 2 \sqrt{ 3 } + 2 \sqrt{ 3 } + \color{#FF6800}{ 4 } } { 3 - 4 }$
$\dfrac { \sqrt{ 9 } + 2 \sqrt{ 3 } + 2 \sqrt{ 3 } + 4 } { \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } }$
 Subtract $4$ from $3$
$\dfrac { \sqrt{ 9 } + 2 \sqrt{ 3 } + 2 \sqrt{ 3 } + 4 } { \color{#FF6800}{ - } \color{#FF6800}{ 1 } }$
$\dfrac { \sqrt{ 9 } + 2 \sqrt{ 3 } + 2 \sqrt{ 3 } + 4 } { \color{#FF6800}{ - } 1 }$
 If the denominator is 1, the denominator can be removed 
$\color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 9 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
$- \left ( \sqrt{ \color{#FF6800}{ 9 } } + 2 \sqrt{ 3 } + 2 \sqrt{ 3 } + 4 \right )$
 Organize the part that can be taken out of the radical sign inside the square root symbol 
$- \left ( \color{#FF6800}{ 3 } + 2 \sqrt{ 3 } + 2 \sqrt{ 3 } + 4 \right )$
$- \left ( \color{#FF6800}{ 3 } + 2 \sqrt{ 3 } + 2 \sqrt{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
 Add $3$ and $4$
$- \left ( \color{#FF6800}{ 7 } + 2 \sqrt{ 3 } + 2 \sqrt{ 3 } \right )$
$- \left ( 7 + \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \right )$
 Calculate between similar terms 
$- \left ( 7 + \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 3 } } \right )$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 7 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 3 } } \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$\color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 3 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture