Symbol

# Calculator search results

Formula
Calculate the value
$\dfrac{ \sqrt{ 3 } }{ 2- \sqrt{ 3 } } - \dfrac{ \sqrt{ 3 } }{ 2+ \sqrt{ 3 } }$
$6$
Calculate the value
$\dfrac { \sqrt{ 3 } } { 2 - \sqrt{ 3 } } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
 Find the conjugate irrational number of denominator 
$\color{#FF6800}{ \dfrac { \sqrt{ 3 } } { 2 - \sqrt{ 3 } } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 2 + \sqrt{ 3 } } { 2 + \sqrt{ 3 } } } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
$\dfrac { \sqrt{ 3 } } { 2 - \sqrt{ 3 } } \times \dfrac { 2 + \sqrt{ 3 } } { 2 + \sqrt{ 3 } } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
 The denominator is multiplied by denominator, and the numerator is multiplied by numerator 
$\color{#FF6800}{ \dfrac { \sqrt{ 3 } \left ( 2 + \sqrt{ 3 } \right ) } { \left ( 2 - \sqrt{ 3 } \right ) \left ( 2 + \sqrt{ 3 } \right ) } } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
$\dfrac { \sqrt{ \color{#FF6800}{ 3 } } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 3 } } \right ) } { \left ( 2 - \sqrt{ 3 } \right ) \left ( 2 + \sqrt{ 3 } \right ) } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
 Multiply each term in parentheses by $\sqrt{ 3 }$
$\dfrac { \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 3 } } } { \left ( 2 - \sqrt{ 3 } \right ) \left ( 2 + \sqrt{ 3 } \right ) } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
$\dfrac { \sqrt{ 3 } \times 2 + \sqrt{ 3 } \sqrt{ 3 } } { \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 3 } } \right ) } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
 Expand the expression using $\left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\dfrac { \sqrt{ 3 } \times 2 + \sqrt{ 3 } \sqrt{ 3 } } { \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
$\dfrac { \sqrt{ 3 } \times 2 + \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 3 } } } { 2 ^ { 2 } - \left ( \sqrt{ 3 } \right ) ^ { 2 } } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
 Arrange the expression 
$\dfrac { \sqrt{ 3 } \times 2 + \sqrt{ \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } } } { 2 ^ { 2 } - \left ( \sqrt{ 3 } \right ) ^ { 2 } } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
$\dfrac { \sqrt{ 3 } \times 2 + \sqrt{ 3 \times 3 } } { \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } - \left ( \sqrt{ 3 } \right ) ^ { 2 } } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
 Calculate power 
$\dfrac { \sqrt{ 3 } \times 2 + \sqrt{ 3 \times 3 } } { \color{#FF6800}{ 4 } - \left ( \sqrt{ 3 } \right ) ^ { 2 } } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
$\dfrac { \sqrt{ 3 } \times 2 + \sqrt{ 3 \times 3 } } { 4 - \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
 Calculate power 
$\dfrac { \sqrt{ 3 } \times 2 + \sqrt{ 3 \times 3 } } { 4 - \color{#FF6800}{ 3 } } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
$\dfrac { \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } + \sqrt{ 3 \times 3 } } { 4 - 3 } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
 Simplify the expression 
$\dfrac { \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } + \sqrt{ 3 \times 3 } } { 4 - 3 } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
$\dfrac { 2 \sqrt{ 3 } + \sqrt{ \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } } } { 4 - 3 } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
 Multiply $3$ and $3$
$\dfrac { 2 \sqrt{ 3 } + \sqrt{ \color{#FF6800}{ 9 } } } { 4 - 3 } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
$\dfrac { 2 \sqrt{ 3 } + \sqrt{ 9 } } { \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
 Subtract $3$ from $4$
$\dfrac { 2 \sqrt{ 3 } + \sqrt{ 9 } } { \color{#FF6800}{ 1 } } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
$\dfrac { 2 \sqrt{ 3 } + \sqrt{ 9 } } { \color{#FF6800}{ 1 } } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
 If the denominator is 1, the denominator can be removed 
$\color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } + \sqrt{ \color{#FF6800}{ 9 } } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
$2 \sqrt{ 3 } + \sqrt{ \color{#FF6800}{ 9 } } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
 Organize the part that can be taken out of the radical sign inside the square root symbol 
$2 \sqrt{ 3 } + \color{#FF6800}{ 3 } - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
$2 \sqrt{ 3 } + 3 - \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } }$
 Find the conjugate irrational number of denominator 
$2 \sqrt{ 3 } + 3 - \left ( \color{#FF6800}{ \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 2 - \sqrt{ 3 } } { 2 - \sqrt{ 3 } } } \right )$
$2 \sqrt{ 3 } + 3 - \left ( \dfrac { \sqrt{ 3 } } { 2 + \sqrt{ 3 } } \times \dfrac { 2 - \sqrt{ 3 } } { 2 - \sqrt{ 3 } } \right )$
 The denominator is multiplied by denominator, and the numerator is multiplied by numerator 
$2 \sqrt{ 3 } + 3 - \color{#FF6800}{ \dfrac { \sqrt{ 3 } \left ( 2 - \sqrt{ 3 } \right ) } { \left ( 2 + \sqrt{ 3 } \right ) \left ( 2 - \sqrt{ 3 } \right ) } }$
$2 \sqrt{ 3 } + 3 - \dfrac { \sqrt{ \color{#FF6800}{ 3 } } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \right ) } { \left ( 2 + \sqrt{ 3 } \right ) \left ( 2 - \sqrt{ 3 } \right ) }$
 Multiply each term in parentheses by $\sqrt{ 3 }$
$2 \sqrt{ 3 } + 3 - \dfrac { \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \right ) } { \left ( 2 + \sqrt{ 3 } \right ) \left ( 2 - \sqrt{ 3 } \right ) }$
$2 \sqrt{ 3 } + 3 - \dfrac { \sqrt{ 3 } \times 2 + \sqrt{ 3 } \times \left ( - \sqrt{ 3 } \right ) } { \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \right ) }$
 Expand the expression using $\left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$2 \sqrt{ 3 } + 3 - \dfrac { \sqrt{ 3 } \times 2 + \sqrt{ 3 } \times \left ( - \sqrt{ 3 } \right ) } { \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
$2 \sqrt{ 3 } + 3 - \dfrac { \sqrt{ 3 } \times 2 + \sqrt{ 3 } \times \left ( - \sqrt{ 3 } \right ) } { \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } - \left ( \sqrt{ 3 } \right ) ^ { 2 } }$
 Calculate power 
$2 \sqrt{ 3 } + 3 - \dfrac { \sqrt{ 3 } \times 2 + \sqrt{ 3 } \times \left ( - \sqrt{ 3 } \right ) } { \color{#FF6800}{ 4 } - \left ( \sqrt{ 3 } \right ) ^ { 2 } }$
$2 \sqrt{ 3 } + 3 - \dfrac { \sqrt{ 3 } \times 2 + \sqrt{ 3 } \times \left ( - \sqrt{ 3 } \right ) } { 4 - \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
 Calculate power 
$2 \sqrt{ 3 } + 3 - \dfrac { \sqrt{ 3 } \times 2 + \sqrt{ 3 } \times \left ( - \sqrt{ 3 } \right ) } { 4 - \color{#FF6800}{ 3 } }$
$2 \sqrt{ 3 } + 3 - \dfrac { \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } + \sqrt{ 3 } \times \left ( - \sqrt{ 3 } \right ) } { 4 - 3 }$
 Simplify the expression 
$2 \sqrt{ 3 } + 3 - \dfrac { \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } + \sqrt{ 3 } \times \left ( - \sqrt{ 3 } \right ) } { 4 - 3 }$
$2 \sqrt{ 3 } + 3 - \dfrac { 2 \sqrt{ 3 } + \sqrt{ 3 } \times \left ( \color{#FF6800}{ - } \sqrt{ 3 } \right ) } { 4 - 3 }$
 Move the (-) sign forward 
$2 \sqrt{ 3 } + 3 - \dfrac { 2 \sqrt{ 3 } \color{#FF6800}{ - } \sqrt{ 3 } \sqrt{ 3 } } { 4 - 3 }$
$2 \sqrt{ 3 } + 3 - \dfrac { 2 \sqrt{ 3 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ 3 } } { 4 - 3 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 \sqrt{ 3 } + 3 - \dfrac { 2 \sqrt{ 3 } \color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } } \sqrt{ 3 } } { 4 - 3 }$
$2 \sqrt{ 3 } + 3 - \dfrac { 2 \sqrt{ 3 } - \left ( \sqrt{ 3 } \right ) ^ { 1 } \sqrt{ \color{#FF6800}{ 3 } } } { 4 - 3 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 \sqrt{ 3 } + 3 - \dfrac { 2 \sqrt{ 3 } - \left ( \sqrt{ 3 } \right ) ^ { 1 } \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } } } { 4 - 3 }$
$2 \sqrt{ 3 } + 3 - \dfrac { 2 \sqrt{ 3 } \color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } } \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } } } { 4 - 3 }$
 Add the exponent as the base is the same 
$2 \sqrt{ 3 } + 3 - \dfrac { 2 \sqrt{ 3 } \color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } } { 4 - 3 }$
$2 \sqrt{ 3 } + 3 - \dfrac { 2 \sqrt{ 3 } - \left ( \sqrt{ 3 } \right ) ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } } { 4 - 3 }$
 Add $1$ and $1$
$2 \sqrt{ 3 } + 3 - \dfrac { 2 \sqrt{ 3 } - \left ( \sqrt{ 3 } \right ) ^ { \color{#FF6800}{ 2 } } } { 4 - 3 }$
$2 \sqrt{ 3 } + 3 - \dfrac { 2 \sqrt{ 3 } - \left ( \sqrt{ 3 } \right ) ^ { 2 } } { \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } }$
 Subtract $3$ from $4$
$2 \sqrt{ 3 } + 3 - \dfrac { 2 \sqrt{ 3 } - \left ( \sqrt{ 3 } \right ) ^ { 2 } } { \color{#FF6800}{ 1 } }$
$2 \sqrt{ 3 } + 3 - \dfrac { 2 \sqrt{ 3 } - \left ( \sqrt{ 3 } \right ) ^ { 2 } } { \color{#FF6800}{ 1 } }$
 If the denominator is 1, the denominator can be removed 
$2 \sqrt{ 3 } + 3 - \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } \right )$
$2 \sqrt{ 3 } + 3 - \left ( 2 \sqrt{ 3 } - \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } \right )$
 If you square the radical sign, it will disappear 
$2 \sqrt{ 3 } + 3 - \left ( 2 \sqrt{ 3 } - \color{#FF6800}{ 3 } \right )$
$2 \sqrt{ 3 } + 3 \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$2 \sqrt{ 3 } + 3 \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } + \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } + 3 \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } + 3$
 Eliminate opponent number 
$3 + 3$
$\color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 3 }$
 Add $3$ and $3$
$\color{#FF6800}{ 6 }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture