qanda-logo
search-icon
Symbol

Calculator search results

Calculate the value
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
$\dfrac { 2 \sqrt{ 6 } } { 3 }$
Calculate the value
$\dfrac { \sqrt{ 3 } } { \sqrt{ 5 } - \sqrt{ 2 } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$ $ Find the conjugate irrational number of denominator $ $
$\color{#FF6800}{ \dfrac { \sqrt{ \color{#FF6800}{ 3 } } } { \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } } { \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$\dfrac { \sqrt{ 3 } } { \sqrt{ 5 } - \sqrt{ 2 } } \times \dfrac { \sqrt{ 5 } + \sqrt{ 2 } } { \sqrt{ 5 } + \sqrt{ 2 } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$ $ The denominator is multiplied by denominator, and the numerator is multiplied by numerator $ $
$\color{#FF6800}{ \dfrac { \sqrt{ \color{#FF6800}{ 3 } } \left ( \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } \right ) } { \left ( \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right ) \left ( \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } \right ) } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$\dfrac { \sqrt{ \color{#FF6800}{ 3 } } \left ( \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } \right ) } { \left ( \sqrt{ 5 } - \sqrt{ 2 } \right ) \left ( \sqrt{ 5 } + \sqrt{ 2 } \right ) } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$ $ Multiply each term in parentheses by $ \sqrt{ 3 }$
$\dfrac { \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 2 } } } { \left ( \sqrt{ 5 } - \sqrt{ 2 } \right ) \left ( \sqrt{ 5 } + \sqrt{ 2 } \right ) } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$\dfrac { \sqrt{ 3 } \sqrt{ 5 } + \sqrt{ 3 } \sqrt{ 2 } } { \left ( \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right ) \left ( \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } \right ) } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$ $ Expand the expression using $ \left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\dfrac { \sqrt{ 3 } \sqrt{ 5 } + \sqrt{ 3 } \sqrt{ 2 } } { \left ( \sqrt{ \color{#FF6800}{ 5 } } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$\dfrac { \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 5 } } + \sqrt{ 3 } \sqrt{ 2 } } { \left ( \sqrt{ 5 } \right ) ^ { 2 } - \left ( \sqrt{ 2 } \right ) ^ { 2 } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$ $ Arrange the expression $ $
$\dfrac { \sqrt{ \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } } + \sqrt{ 3 } \sqrt{ 2 } } { \left ( \sqrt{ 5 } \right ) ^ { 2 } - \left ( \sqrt{ 2 } \right ) ^ { 2 } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$\dfrac { \sqrt{ 3 \times 5 } + \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 2 } } } { \left ( \sqrt{ 5 } \right ) ^ { 2 } - \left ( \sqrt{ 2 } \right ) ^ { 2 } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$ $ Arrange the expression $ $
$\dfrac { \sqrt{ 3 \times 5 } + \sqrt{ \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } } { \left ( \sqrt{ 5 } \right ) ^ { 2 } - \left ( \sqrt{ 2 } \right ) ^ { 2 } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$\dfrac { \sqrt{ 3 \times 5 } + \sqrt{ 3 \times 2 } } { \left ( \sqrt{ \color{#FF6800}{ 5 } } \right ) ^ { \color{#FF6800}{ 2 } } - \left ( \sqrt{ 2 } \right ) ^ { 2 } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$ $ Calculate power $ $
$\dfrac { \sqrt{ 3 \times 5 } + \sqrt{ 3 \times 2 } } { \color{#FF6800}{ 5 } - \left ( \sqrt{ 2 } \right ) ^ { 2 } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$\dfrac { \sqrt{ 3 \times 5 } + \sqrt{ 3 \times 2 } } { 5 - \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$ $ Calculate power $ $
$\dfrac { \sqrt{ 3 \times 5 } + \sqrt{ 3 \times 2 } } { 5 - \color{#FF6800}{ 2 } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$\dfrac { \sqrt{ \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } } + \sqrt{ 3 \times 2 } } { 5 - 2 } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$ $ Multiply $ 3 $ and $ 5$
$\dfrac { \sqrt{ \color{#FF6800}{ 15 } } + \sqrt{ 3 \times 2 } } { 5 - 2 } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$\dfrac { \sqrt{ 15 } + \sqrt{ \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } } { 5 - 2 } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$ $ Multiply $ 3 $ and $ 2$
$\dfrac { \sqrt{ 15 } + \sqrt{ \color{#FF6800}{ 6 } } } { 5 - 2 } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$ $ Subtract $ 2 $ from $ 5$
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { \color{#FF6800}{ 3 } } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } }$
$ $ Find the conjugate irrational number of denominator $ $
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \left ( \color{#FF6800}{ \dfrac { \sqrt{ \color{#FF6800}{ 3 } } } { \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } } { \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } } } \right )$
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \left ( \dfrac { \sqrt{ 3 } } { \sqrt{ 5 } + \sqrt{ 2 } } \times \dfrac { \sqrt{ 5 } - \sqrt{ 2 } } { \sqrt{ 5 } - \sqrt{ 2 } } \right )$
$ $ The denominator is multiplied by denominator, and the numerator is multiplied by numerator $ $
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \color{#FF6800}{ \dfrac { \sqrt{ \color{#FF6800}{ 3 } } \left ( \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right ) } { \left ( \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } \right ) \left ( \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right ) } }$
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \dfrac { \sqrt{ \color{#FF6800}{ 3 } } \left ( \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right ) } { \left ( \sqrt{ 5 } + \sqrt{ 2 } \right ) \left ( \sqrt{ 5 } - \sqrt{ 2 } \right ) }$
$ $ Multiply each term in parentheses by $ \sqrt{ 3 }$
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \dfrac { \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 3 } } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right ) } { \left ( \sqrt{ 5 } + \sqrt{ 2 } \right ) \left ( \sqrt{ 5 } - \sqrt{ 2 } \right ) }$
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \dfrac { \sqrt{ 3 } \sqrt{ 5 } + \sqrt{ 3 } \left ( - \sqrt{ 2 } \right ) } { \left ( \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } \right ) \left ( \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right ) }$
$ $ Expand the expression using $ \left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \dfrac { \sqrt{ 3 } \sqrt{ 5 } + \sqrt{ 3 } \left ( - \sqrt{ 2 } \right ) } { \left ( \sqrt{ \color{#FF6800}{ 5 } } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \dfrac { \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 5 } } + \sqrt{ 3 } \left ( - \sqrt{ 2 } \right ) } { \left ( \sqrt{ 5 } \right ) ^ { 2 } - \left ( \sqrt{ 2 } \right ) ^ { 2 } }$
$ $ Arrange the expression $ $
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \dfrac { \sqrt{ \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } } + \sqrt{ 3 } \left ( - \sqrt{ 2 } \right ) } { \left ( \sqrt{ 5 } \right ) ^ { 2 } - \left ( \sqrt{ 2 } \right ) ^ { 2 } }$
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \dfrac { \sqrt{ 3 \times 5 } + \sqrt{ 3 } \left ( - \sqrt{ 2 } \right ) } { \left ( \sqrt{ \color{#FF6800}{ 5 } } \right ) ^ { \color{#FF6800}{ 2 } } - \left ( \sqrt{ 2 } \right ) ^ { 2 } }$
$ $ Calculate power $ $
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \dfrac { \sqrt{ 3 \times 5 } + \sqrt{ 3 } \left ( - \sqrt{ 2 } \right ) } { \color{#FF6800}{ 5 } - \left ( \sqrt{ 2 } \right ) ^ { 2 } }$
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \dfrac { \sqrt{ 3 \times 5 } + \sqrt{ 3 } \left ( - \sqrt{ 2 } \right ) } { 5 - \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
$ $ Calculate power $ $
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \dfrac { \sqrt{ 3 \times 5 } + \sqrt{ 3 } \left ( - \sqrt{ 2 } \right ) } { 5 - \color{#FF6800}{ 2 } }$
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \dfrac { \sqrt{ \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } } + \sqrt{ 3 } \left ( - \sqrt{ 2 } \right ) } { 5 - 2 }$
$ $ Multiply $ 3 $ and $ 5$
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \dfrac { \sqrt{ \color{#FF6800}{ 15 } } + \sqrt{ 3 } \left ( - \sqrt{ 2 } \right ) } { 5 - 2 }$
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \dfrac { \sqrt{ 15 } + \sqrt{ 3 } \left ( \color{#FF6800}{ - } \sqrt{ 2 } \right ) } { 5 - 2 }$
$ $ Move the (-) sign forward $ $
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \dfrac { \sqrt{ 15 } \color{#FF6800}{ - } \sqrt{ 3 } \sqrt{ 2 } } { 5 - 2 }$
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \dfrac { \sqrt{ 15 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 2 } } } { 5 - 2 }$
$ $ Calculate multiplication $ $
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \dfrac { \sqrt{ 15 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 6 } } } { 5 - 2 }$
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \dfrac { \sqrt{ 15 } - \sqrt{ 6 } } { \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } }$
$ $ Subtract $ 2 $ from $ 5$
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } } { 3 } - \dfrac { \sqrt{ 15 } - \sqrt{ 6 } } { \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ \dfrac { \sqrt{ \color{#FF6800}{ 15 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 6 } } } { \color{#FF6800}{ 3 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \sqrt{ \color{#FF6800}{ 15 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 6 } } } { \color{#FF6800}{ 3 } } }$
$ $ Combine the fraction with the same denominator $ $
$\dfrac { \sqrt{ \color{#FF6800}{ 15 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 15 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 6 } } \right ) } { 3 }$
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } \color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 15 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 6 } } \right ) } { 3 }$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$\dfrac { \sqrt{ 15 } + \sqrt{ 6 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 15 } } + \sqrt{ \color{#FF6800}{ 6 } } } { 3 }$
$\dfrac { \sqrt{ \color{#FF6800}{ 15 } } + \sqrt{ 6 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 15 } } + \sqrt{ 6 } } { 3 }$
$ $ Remove the two numbers if the values are the same and the signs are different $ $
$\dfrac { \sqrt{ 6 } + \sqrt{ 6 } } { 3 }$
$\dfrac { \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 6 } } } { 3 }$
$ $ Calculate between similar terms $ $
$\dfrac { \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } } { 3 }$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
check-iconSearch by problem image
check-iconAsk 1:1 question to TOP class teachers
check-iconAI recommend problems and video lecture