Calculator search results

Formula
Calculate the value
$\dfrac{ \sqrt{ 21 } +2 \sqrt{ 5 } }{ \sqrt{ 3 } } + \dfrac{ 4 \sqrt{ 2 } - \sqrt{ 14 } }{ \sqrt{ 2 } }$
$\dfrac { 2 \sqrt{ 15 } + 12 } { 3 }$
Calculate the value
$\color{#FF6800}{ \dfrac { \sqrt{ 21 } + 2 \sqrt{ 5 } } { \sqrt{ 3 } } } + \dfrac { 4 \sqrt{ 2 } - \sqrt{ 14 } } { \sqrt{ 2 } }$
 Calculate the expression 
$\color{#FF6800}{ \dfrac { 3 \sqrt{ 7 } + 2 \sqrt{ 15 } } { 3 } } + \dfrac { 4 \sqrt{ 2 } - \sqrt{ 14 } } { \sqrt{ 2 } }$
$\dfrac { 3 \sqrt{ 7 } + 2 \sqrt{ 15 } } { 3 } + \color{#FF6800}{ \dfrac { 4 \sqrt{ 2 } - \sqrt{ 14 } } { \sqrt{ 2 } } }$
 Calculate the expression 
$\dfrac { 3 \sqrt{ 7 } + 2 \sqrt{ 15 } } { 3 } + \color{#FF6800}{ \dfrac { 8 - \left ( 2 \sqrt{ 7 } \right ) } { 2 } }$
$\dfrac { 3 \sqrt{ 7 } + 2 \sqrt{ 15 } } { 3 } + \dfrac { 8 \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 7 } } \right ) } { 2 }$
 Get rid of unnecessary parentheses 
$\dfrac { 3 \sqrt{ 7 } + 2 \sqrt{ 15 } } { 3 } + \dfrac { 8 \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 7 } } } { 2 }$
$\dfrac { 3 \sqrt{ 7 } + 2 \sqrt{ 15 } } { 3 } + \color{#FF6800}{ \dfrac { 8 - 2 \sqrt{ 7 } } { 2 } }$
 Reduce the fraction 
$\dfrac { 3 \sqrt{ 7 } + 2 \sqrt{ 15 } } { 3 } + \color{#FF6800}{ 4 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 7 } }$
$\color{#FF6800}{ \dfrac { 3 \sqrt{ 7 } + 2 \sqrt{ 15 } } { 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } - \sqrt{ 7 }$
 Find the sum of the fractions 
$\color{#FF6800}{ \dfrac { 3 \sqrt{ 7 } + 2 \sqrt{ 15 } + 12 } { 3 } } - \sqrt{ 7 }$
$\color{#FF6800}{ \dfrac { 3 \sqrt{ 7 } + 2 \sqrt{ 15 } + 12 } { 3 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 7 } }$
 Find the sum of the fractions 
$\color{#FF6800}{ \dfrac { 3 \sqrt{ 7 } + 2 \sqrt{ 15 } + 12 - 3 \sqrt{ 7 } } { 3 } }$
$\dfrac { \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 7 } } + 2 \sqrt{ 15 } + 12 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 7 } } } { 3 }$
 Eliminate opponent number 
$\dfrac { 2 \sqrt{ 15 } + 12 } { 3 }$
Solution search results