Symbol

Calculator search results

Formula
Calculate the value
$\dfrac{ \sqrt{ 2 } -1 }{ \sqrt{ 2 } +1 }$
$3 - 2 \sqrt{ 2 }$
Calculate the value
$\dfrac { \sqrt{ 2 } - 1 } { \sqrt{ 2 } + 1 }$
 Find the conjugate irrational number of denominator 
$\color{#FF6800}{ \dfrac { \sqrt{ 2 } - 1 } { \sqrt{ 2 } + 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { \sqrt{ 2 } - 1 } { \sqrt{ 2 } - 1 } }$
$\dfrac { \sqrt{ 2 } - 1 } { \sqrt{ 2 } + 1 } \times \dfrac { \sqrt{ 2 } - 1 } { \sqrt{ 2 } - 1 }$
 The denominator is multiplied by denominator, and the numerator is multiplied by numerator 
$\color{#FF6800}{ \dfrac { \left ( \sqrt{ 2 } - 1 \right ) \left ( \sqrt{ 2 } - 1 \right ) } { \left ( \sqrt{ 2 } + 1 \right ) \left ( \sqrt{ 2 } - 1 \right ) } }$
$\dfrac { \left ( \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) } { \left ( \sqrt{ 2 } + 1 \right ) \left ( \sqrt{ 2 } - 1 \right ) }$
 Expand using $\left(a + b\right)\left(c + d\right) = ac + ad + bc + bd$
$\dfrac { \sqrt{ \color{#FF6800}{ 2 } } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 1 } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) } { \left ( \sqrt{ 2 } + 1 \right ) \left ( \sqrt{ 2 } - 1 \right ) }$
$\dfrac { \sqrt{ 2 } \sqrt{ 2 } + \sqrt{ 2 } \times \left ( - 1 \right ) - 1 \sqrt{ 2 } - 1 \times \left ( - 1 \right ) } { \left ( \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) }$
 Expand the expression using $\left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\dfrac { \sqrt{ 2 } \sqrt{ 2 } + \sqrt{ 2 } \times \left ( - 1 \right ) - 1 \sqrt{ 2 } - 1 \times \left ( - 1 \right ) } { \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } } }$
$\dfrac { \sqrt{ \color{#FF6800}{ 2 } } \sqrt{ \color{#FF6800}{ 2 } } + \sqrt{ 2 } \times \left ( - 1 \right ) - 1 \sqrt{ 2 } - 1 \times \left ( - 1 \right ) } { \left ( \sqrt{ 2 } \right ) ^ { 2 } - 1 ^ { 2 } }$
 Arrange the expression 
$\dfrac { \sqrt{ \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } + \sqrt{ 2 } \times \left ( - 1 \right ) - 1 \sqrt{ 2 } - 1 \times \left ( - 1 \right ) } { \left ( \sqrt{ 2 } \right ) ^ { 2 } - 1 ^ { 2 } }$
$\dfrac { \sqrt{ 2 \times 2 } + \sqrt{ 2 } \times \left ( - 1 \right ) - 1 \sqrt{ 2 } - 1 \times \left ( - 1 \right ) } { \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } } - 1 ^ { 2 } }$
 Calculate power 
$\dfrac { \sqrt{ 2 \times 2 } + \sqrt{ 2 } \times \left ( - 1 \right ) - 1 \sqrt{ 2 } - 1 \times \left ( - 1 \right ) } { \color{#FF6800}{ 2 } - 1 ^ { 2 } }$
$\dfrac { \sqrt{ 2 \times 2 } + \sqrt{ 2 } \times \left ( - 1 \right ) - 1 \sqrt{ 2 } - 1 \times \left ( - 1 \right ) } { 2 - \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } } }$
 Calculate power 
$\dfrac { \sqrt{ 2 \times 2 } + \sqrt{ 2 } \times \left ( - 1 \right ) - 1 \sqrt{ 2 } - 1 \times \left ( - 1 \right ) } { 2 - \color{#FF6800}{ 1 } }$
$\dfrac { \sqrt{ \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } + \sqrt{ 2 } \times \left ( - 1 \right ) - 1 \sqrt{ 2 } - 1 \times \left ( - 1 \right ) } { 2 - 1 }$
 Multiply $2$ and $2$
$\dfrac { \sqrt{ \color{#FF6800}{ 4 } } + \sqrt{ 2 } \times \left ( - 1 \right ) - 1 \sqrt{ 2 } - 1 \times \left ( - 1 \right ) } { 2 - 1 }$
$\dfrac { \sqrt{ 4 } + \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) - 1 \sqrt{ 2 } - 1 \times \left ( - 1 \right ) } { 2 - 1 }$
 Simplify the expression 
$\dfrac { \sqrt{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \sqrt{ \color{#FF6800}{ 2 } } - 1 \sqrt{ 2 } - 1 \times \left ( - 1 \right ) } { 2 - 1 }$
$\dfrac { \sqrt{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \sqrt{ 2 } - 1 \sqrt{ 2 } - 1 \times \left ( - 1 \right ) } { 2 - 1 }$
 Multiplying any number by 1 does not change the value 
$\dfrac { \sqrt{ 4 } - \sqrt{ 2 } - 1 \sqrt{ 2 } - 1 \times \left ( - 1 \right ) } { 2 - 1 }$
$\dfrac { \sqrt{ 4 } - \sqrt{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \sqrt{ 2 } - 1 \times \left ( - 1 \right ) } { 2 - 1 }$
 Multiplying any number by 1 does not change the value 
$\dfrac { \sqrt{ 4 } - \sqrt{ 2 } - \sqrt{ 2 } - 1 \times \left ( - 1 \right ) } { 2 - 1 }$
$\dfrac { \sqrt{ 4 } - \sqrt{ 2 } - \sqrt{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) } { 2 - 1 }$
 Multiply $- 1$ and $- 1$
$\dfrac { \sqrt{ 4 } - \sqrt{ 2 } - \sqrt{ 2 } + \color{#FF6800}{ 1 } } { 2 - 1 }$
$\dfrac { \sqrt{ 4 } - \sqrt{ 2 } - \sqrt{ 2 } + 1 } { \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } }$
 Subtract $1$ from $2$
$\dfrac { \sqrt{ 4 } - \sqrt{ 2 } - \sqrt{ 2 } + 1 } { \color{#FF6800}{ 1 } }$
$\dfrac { \sqrt{ 4 } - \sqrt{ 2 } - \sqrt{ 2 } + 1 } { \color{#FF6800}{ 1 } }$
 If the denominator is 1, the denominator can be removed 
$\sqrt{ \color{#FF6800}{ 4 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$\sqrt{ \color{#FF6800}{ 4 } } - \sqrt{ 2 } - \sqrt{ 2 } + 1$
 Organize the part that can be taken out of the radical sign inside the square root symbol 
$\color{#FF6800}{ 2 } - \sqrt{ 2 } - \sqrt{ 2 } + 1$
$\color{#FF6800}{ 2 } - \sqrt{ 2 } - \sqrt{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
 Add $2$ and $1$
$\color{#FF6800}{ 3 } - \sqrt{ 2 } - \sqrt{ 2 }$
$3 \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } }$
 Calculate between similar terms 
$3 \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture