Symbol

# Calculator search results

Formula
Calculate the value
$\dfrac{ \sqrt{ 15 } }{ \sqrt{ 12 } } \div \dfrac{ \sqrt{ 5 } }{ 2 \sqrt{ 3 } } \times \left( - \sqrt{ 32 } \right)$
$- 4 \sqrt{ 6 }$
Calculate the value
$\dfrac { \sqrt{ 15 } } { \sqrt{ 12 } } \div \dfrac { \sqrt{ 5 } } { 2 \sqrt{ 3 } } \times \left ( \color{#FF6800}{ - } \sqrt{ 32 } \right )$
 Move the (-) sign forward 
$\color{#FF6800}{ - } \dfrac { \sqrt{ 15 } } { \sqrt{ 12 } } \div \dfrac { \sqrt{ 5 } } { 2 \sqrt{ 3 } } \times \sqrt{ 32 }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \sqrt{ 15 } } { \sqrt{ 12 } } } \color{#FF6800}{ \div } \color{#FF6800}{ \dfrac { \sqrt{ 5 } } { 2 \sqrt{ 3 } } } \color{#FF6800}{ \times } \sqrt{ \color{#FF6800}{ 32 } }$
 Arrange the terms multiplied by fractions 
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \sqrt{ 15 } \left ( 2 \sqrt{ 3 } \right ) \sqrt{ 32 } } { \sqrt{ 12 } \sqrt{ 5 } } }$
$- \color{#FF6800}{ \dfrac { \sqrt{ 15 } \left ( 2 \sqrt{ 3 } \right ) \sqrt{ 32 } } { \sqrt{ 12 } \sqrt{ 5 } } }$
 Calculate the expression 
$- \color{#FF6800}{ \dfrac { 24 \sqrt{ 10 } } { 2 \sqrt{ 15 } } }$
$- \color{#FF6800}{ \dfrac { 24 \sqrt{ 10 } } { 2 \sqrt{ 15 } } }$
 Calculate the expression 
$- \left ( \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 6 } } \right )$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 6 } } \right )$
 Get rid of unnecessary parentheses 
$\color{#FF6800}{ - } \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 6 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture