Symbol

# Calculator search results

Formula
Calculate the value
$\dfrac{ \sqrt{ 12 } }{ \sqrt{ 7 } - \sqrt{ 3 } }$
$\dfrac { \sqrt{ 21 } + 3 } { 2 }$
Calculate the value
$\dfrac { \sqrt{ \color{#FF6800}{ 12 } } } { \sqrt{ 7 } - \sqrt{ 3 } }$
 Organize the part that can be taken out of the radical sign inside the square root symbol 
$\dfrac { \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } } { \sqrt{ 7 } - \sqrt{ 3 } }$
$\dfrac { 2 \sqrt{ 3 } } { \sqrt{ 7 } - \sqrt{ 3 } }$
 Find the conjugate irrational number of denominator 
$\color{#FF6800}{ \dfrac { 2 \sqrt{ 3 } } { \sqrt{ 7 } - \sqrt{ 3 } } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { \sqrt{ 7 } + \sqrt{ 3 } } { \sqrt{ 7 } + \sqrt{ 3 } } }$
$\dfrac { 2 \sqrt{ 3 } } { \sqrt{ 7 } - \sqrt{ 3 } } \times \dfrac { \sqrt{ 7 } + \sqrt{ 3 } } { \sqrt{ 7 } + \sqrt{ 3 } }$
 The denominator is multiplied by denominator, and the numerator is multiplied by numerator 
$\color{#FF6800}{ \dfrac { \left ( 2 \sqrt{ 3 } \right ) \left ( \sqrt{ 7 } + \sqrt{ 3 } \right ) } { \left ( \sqrt{ 7 } - \sqrt{ 3 } \right ) \left ( \sqrt{ 7 } + \sqrt{ 3 } \right ) } }$
$\dfrac { \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \sqrt{ \color{#FF6800}{ 7 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 3 } } \right ) } { \left ( \sqrt{ 7 } - \sqrt{ 3 } \right ) \left ( \sqrt{ 7 } + \sqrt{ 3 } \right ) }$
 Multiply each term in parentheses by $2 \sqrt{ 3 }$
$\dfrac { \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \sqrt{ \color{#FF6800}{ 7 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \sqrt{ \color{#FF6800}{ 3 } } } { \left ( \sqrt{ 7 } - \sqrt{ 3 } \right ) \left ( \sqrt{ 7 } + \sqrt{ 3 } \right ) }$
$\dfrac { \left ( 2 \sqrt{ 3 } \right ) \sqrt{ 7 } + \left ( 2 \sqrt{ 3 } \right ) \sqrt{ 3 } } { \left ( \sqrt{ \color{#FF6800}{ 7 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \sqrt{ \color{#FF6800}{ 7 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 3 } } \right ) }$
 Expand the expression using $\left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\dfrac { \left ( 2 \sqrt{ 3 } \right ) \sqrt{ 7 } + \left ( 2 \sqrt{ 3 } \right ) \sqrt{ 3 } } { \left ( \sqrt{ \color{#FF6800}{ 7 } } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
$\dfrac { \left ( 2 \sqrt{ 3 } \right ) \sqrt{ 7 } + \left ( 2 \sqrt{ 3 } \right ) \sqrt{ 3 } } { \left ( \sqrt{ \color{#FF6800}{ 7 } } \right ) ^ { \color{#FF6800}{ 2 } } - \left ( \sqrt{ 3 } \right ) ^ { 2 } }$
 Calculate power 
$\dfrac { \left ( 2 \sqrt{ 3 } \right ) \sqrt{ 7 } + \left ( 2 \sqrt{ 3 } \right ) \sqrt{ 3 } } { \color{#FF6800}{ 7 } - \left ( \sqrt{ 3 } \right ) ^ { 2 } }$
$\dfrac { \left ( 2 \sqrt{ 3 } \right ) \sqrt{ 7 } + \left ( 2 \sqrt{ 3 } \right ) \sqrt{ 3 } } { 7 - \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
 Calculate power 
$\dfrac { \left ( 2 \sqrt{ 3 } \right ) \sqrt{ 7 } + \left ( 2 \sqrt{ 3 } \right ) \sqrt{ 3 } } { 7 - \color{#FF6800}{ 3 } }$
$\dfrac { \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \sqrt{ \color{#FF6800}{ 7 } } + \left ( 2 \sqrt{ 3 } \right ) \sqrt{ 3 } } { 7 - 3 }$
 Get rid of unnecessary parentheses 
$\dfrac { \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 7 } } + \left ( 2 \sqrt{ 3 } \right ) \sqrt{ 3 } } { 7 - 3 }$
$\dfrac { \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 7 } } + \left ( 2 \sqrt{ 3 } \right ) \sqrt{ 3 } } { 7 - 3 }$
 Simplify the expression 
$\dfrac { \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 21 } } + \left ( 2 \sqrt{ 3 } \right ) \sqrt{ 3 } } { 7 - 3 }$
$\dfrac { 2 \sqrt{ 21 } + \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \sqrt{ \color{#FF6800}{ 3 } } } { 7 - 3 }$
 Get rid of unnecessary parentheses 
$\dfrac { 2 \sqrt{ 21 } + \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 3 } } } { 7 - 3 }$
$\dfrac { 2 \sqrt{ 21 } + \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 3 } } } { 7 - 3 }$
 Simplify the expression 
$\dfrac { 2 \sqrt{ 21 } + \color{#FF6800}{ 6 } } { 7 - 3 }$
$\dfrac { 2 \sqrt{ 21 } + 6 } { \color{#FF6800}{ 7 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } }$
 Subtract $3$ from $7$
$\dfrac { 2 \sqrt{ 21 } + 6 } { \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ \dfrac { 2 \sqrt{ 21 } + 6 } { 4 } }$
 Reduce the fraction 
$\color{#FF6800}{ \dfrac { \sqrt{ 21 } + 3 } { 2 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture