qanda-logo
search-icon
Symbol
apple-logo
google-play-logo

Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$\dfrac{ \sqrt{ 10 } + \sqrt{ 6 } }{ \sqrt{ 10 } - \sqrt{ 6 } }$
$4 + \sqrt{ 15 }$
Calculate the value
$\dfrac { \sqrt{ 10 } + \sqrt{ 6 } } { \sqrt{ 10 } - \sqrt{ 6 } }$
$ $ Find the conjugate irrational number of denominator $ $
$\color{#FF6800}{ \dfrac { \sqrt{ 10 } + \sqrt{ 6 } } { \sqrt{ 10 } - \sqrt{ 6 } } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { \sqrt{ 10 } + \sqrt{ 6 } } { \sqrt{ 10 } + \sqrt{ 6 } } }$
$\dfrac { \sqrt{ 10 } + \sqrt{ 6 } } { \sqrt{ 10 } - \sqrt{ 6 } } \times \dfrac { \sqrt{ 10 } + \sqrt{ 6 } } { \sqrt{ 10 } + \sqrt{ 6 } }$
$ $ The denominator is multiplied by denominator, and the numerator is multiplied by numerator $ $
$\color{#FF6800}{ \dfrac { \left ( \sqrt{ 10 } + \sqrt{ 6 } \right ) \left ( \sqrt{ 10 } + \sqrt{ 6 } \right ) } { \left ( \sqrt{ 10 } - \sqrt{ 6 } \right ) \left ( \sqrt{ 10 } + \sqrt{ 6 } \right ) } }$
$\dfrac { \left ( \sqrt{ \color{#FF6800}{ 10 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 6 } } \right ) \left ( \sqrt{ \color{#FF6800}{ 10 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 6 } } \right ) } { \left ( \sqrt{ 10 } - \sqrt{ 6 } \right ) \left ( \sqrt{ 10 } + \sqrt{ 6 } \right ) }$
$ $ Expand using $ \left(a + b\right)\left(c + d\right) = ac + ad + bc + bd$
$\dfrac { \sqrt{ \color{#FF6800}{ 10 } } \sqrt{ \color{#FF6800}{ 10 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 10 } } \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 6 } } \sqrt{ \color{#FF6800}{ 10 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 6 } } \sqrt{ \color{#FF6800}{ 6 } } } { \left ( \sqrt{ 10 } - \sqrt{ 6 } \right ) \left ( \sqrt{ 10 } + \sqrt{ 6 } \right ) }$
$\dfrac { \sqrt{ 10 } \sqrt{ 10 } + \sqrt{ 10 } \sqrt{ 6 } + \sqrt{ 6 } \sqrt{ 10 } + \sqrt{ 6 } \sqrt{ 6 } } { \left ( \sqrt{ \color{#FF6800}{ 10 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 6 } } \right ) \left ( \sqrt{ \color{#FF6800}{ 10 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 6 } } \right ) }$
$ $ Expand the expression using $ \left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\dfrac { \sqrt{ 10 } \sqrt{ 10 } + \sqrt{ 10 } \sqrt{ 6 } + \sqrt{ 6 } \sqrt{ 10 } + \sqrt{ 6 } \sqrt{ 6 } } { \left ( \sqrt{ \color{#FF6800}{ 10 } } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 6 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
$\dfrac { \sqrt{ \color{#FF6800}{ 10 } } \sqrt{ \color{#FF6800}{ 10 } } + \sqrt{ 10 } \sqrt{ 6 } + \sqrt{ 6 } \sqrt{ 10 } + \sqrt{ 6 } \sqrt{ 6 } } { \left ( \sqrt{ 10 } \right ) ^ { 2 } - \left ( \sqrt{ 6 } \right ) ^ { 2 } }$
$ $ Arrange the expression $ $
$\dfrac { \sqrt{ \color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } } + \sqrt{ 10 } \sqrt{ 6 } + \sqrt{ 6 } \sqrt{ 10 } + \sqrt{ 6 } \sqrt{ 6 } } { \left ( \sqrt{ 10 } \right ) ^ { 2 } - \left ( \sqrt{ 6 } \right ) ^ { 2 } }$
$\dfrac { \sqrt{ 10 \times 10 } + \sqrt{ \color{#FF6800}{ 10 } } \sqrt{ \color{#FF6800}{ 6 } } + \sqrt{ 6 } \sqrt{ 10 } + \sqrt{ 6 } \sqrt{ 6 } } { \left ( \sqrt{ 10 } \right ) ^ { 2 } - \left ( \sqrt{ 6 } \right ) ^ { 2 } }$
$ $ Arrange the expression $ $
$\dfrac { \sqrt{ 10 \times 10 } + \sqrt{ \color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 } } + \sqrt{ 6 } \sqrt{ 10 } + \sqrt{ 6 } \sqrt{ 6 } } { \left ( \sqrt{ 10 } \right ) ^ { 2 } - \left ( \sqrt{ 6 } \right ) ^ { 2 } }$
$\dfrac { \sqrt{ 10 \times 10 } + \sqrt{ 10 \times 6 } + \sqrt{ \color{#FF6800}{ 6 } } \sqrt{ \color{#FF6800}{ 10 } } + \sqrt{ 6 } \sqrt{ 6 } } { \left ( \sqrt{ 10 } \right ) ^ { 2 } - \left ( \sqrt{ 6 } \right ) ^ { 2 } }$
$ $ Arrange the expression $ $
$\dfrac { \sqrt{ 10 \times 10 } + \sqrt{ 10 \times 6 } + \sqrt{ \color{#FF6800}{ 6 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } } + \sqrt{ 6 } \sqrt{ 6 } } { \left ( \sqrt{ 10 } \right ) ^ { 2 } - \left ( \sqrt{ 6 } \right ) ^ { 2 } }$
$\dfrac { \sqrt{ 10 \times 10 } + \sqrt{ 10 \times 6 } + \sqrt{ 6 \times 10 } + \sqrt{ \color{#FF6800}{ 6 } } \sqrt{ \color{#FF6800}{ 6 } } } { \left ( \sqrt{ 10 } \right ) ^ { 2 } - \left ( \sqrt{ 6 } \right ) ^ { 2 } }$
$ $ Arrange the expression $ $
$\dfrac { \sqrt{ 10 \times 10 } + \sqrt{ 10 \times 6 } + \sqrt{ 6 \times 10 } + \sqrt{ \color{#FF6800}{ 6 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 } } } { \left ( \sqrt{ 10 } \right ) ^ { 2 } - \left ( \sqrt{ 6 } \right ) ^ { 2 } }$
$\dfrac { \sqrt{ 10 \times 10 } + \sqrt{ 10 \times 6 } + \sqrt{ 6 \times 10 } + \sqrt{ 6 \times 6 } } { \left ( \sqrt{ \color{#FF6800}{ 10 } } \right ) ^ { \color{#FF6800}{ 2 } } - \left ( \sqrt{ 6 } \right ) ^ { 2 } }$
$ $ Calculate power $ $
$\dfrac { \sqrt{ 10 \times 10 } + \sqrt{ 10 \times 6 } + \sqrt{ 6 \times 10 } + \sqrt{ 6 \times 6 } } { \color{#FF6800}{ 10 } - \left ( \sqrt{ 6 } \right ) ^ { 2 } }$
$\dfrac { \sqrt{ 10 \times 10 } + \sqrt{ 10 \times 6 } + \sqrt{ 6 \times 10 } + \sqrt{ 6 \times 6 } } { 10 - \left ( \sqrt{ \color{#FF6800}{ 6 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
$ $ Calculate power $ $
$\dfrac { \sqrt{ 10 \times 10 } + \sqrt{ 10 \times 6 } + \sqrt{ 6 \times 10 } + \sqrt{ 6 \times 6 } } { 10 - \color{#FF6800}{ 6 } }$
$\dfrac { \sqrt{ \color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } } + \sqrt{ 10 \times 6 } + \sqrt{ 6 \times 10 } + \sqrt{ 6 \times 6 } } { 10 - 6 }$
$ $ Multiply $ 10 $ and $ 10$
$\dfrac { \sqrt{ \color{#FF6800}{ 100 } } + \sqrt{ 10 \times 6 } + \sqrt{ 6 \times 10 } + \sqrt{ 6 \times 6 } } { 10 - 6 }$
$\dfrac { \sqrt{ 100 } + \sqrt{ \color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 } } + \sqrt{ 6 \times 10 } + \sqrt{ 6 \times 6 } } { 10 - 6 }$
$ $ Multiply $ 10 $ and $ 6$
$\dfrac { \sqrt{ 100 } + \sqrt{ \color{#FF6800}{ 60 } } + \sqrt{ 6 \times 10 } + \sqrt{ 6 \times 6 } } { 10 - 6 }$
$\dfrac { \sqrt{ 100 } + \sqrt{ 60 } + \sqrt{ \color{#FF6800}{ 6 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } } + \sqrt{ 6 \times 6 } } { 10 - 6 }$
$ $ Multiply $ 6 $ and $ 10$
$\dfrac { \sqrt{ 100 } + \sqrt{ 60 } + \sqrt{ \color{#FF6800}{ 60 } } + \sqrt{ 6 \times 6 } } { 10 - 6 }$
$\dfrac { \sqrt{ 100 } + \sqrt{ 60 } + \sqrt{ 60 } + \sqrt{ \color{#FF6800}{ 6 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 } } } { 10 - 6 }$
$ $ Multiply $ 6 $ and $ 6$
$\dfrac { \sqrt{ 100 } + \sqrt{ 60 } + \sqrt{ 60 } + \sqrt{ \color{#FF6800}{ 36 } } } { 10 - 6 }$
$\dfrac { \sqrt{ 100 } + \sqrt{ 60 } + \sqrt{ 60 } + \sqrt{ 36 } } { \color{#FF6800}{ 10 } \color{#FF6800}{ - } \color{#FF6800}{ 6 } }$
$ $ Subtract $ 6 $ from $ 10$
$\dfrac { \sqrt{ 100 } + \sqrt{ 60 } + \sqrt{ 60 } + \sqrt{ 36 } } { \color{#FF6800}{ 4 } }$
$\dfrac { \sqrt{ \color{#FF6800}{ 100 } } + \sqrt{ 60 } + \sqrt{ 60 } + \sqrt{ 36 } } { 4 }$
$ $ Organize the part that can be taken out of the radical sign inside the square root symbol $ $
$\dfrac { \color{#FF6800}{ 10 } + \sqrt{ 60 } + \sqrt{ 60 } + \sqrt{ 36 } } { 4 }$
$\dfrac { 10 + \sqrt{ \color{#FF6800}{ 60 } } + \sqrt{ 60 } + \sqrt{ 36 } } { 4 }$
$ $ Organize the part that can be taken out of the radical sign inside the square root symbol $ $
$\dfrac { 10 + \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 15 } } + \sqrt{ 60 } + \sqrt{ 36 } } { 4 }$
$\dfrac { 10 + 2 \sqrt{ 15 } + \sqrt{ \color{#FF6800}{ 60 } } + \sqrt{ 36 } } { 4 }$
$ $ Organize the part that can be taken out of the radical sign inside the square root symbol $ $
$\dfrac { 10 + 2 \sqrt{ 15 } + \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 15 } } + \sqrt{ 36 } } { 4 }$
$\dfrac { 10 + 2 \sqrt{ 15 } + 2 \sqrt{ 15 } + \sqrt{ \color{#FF6800}{ 36 } } } { 4 }$
$ $ Organize the part that can be taken out of the radical sign inside the square root symbol $ $
$\dfrac { 10 + 2 \sqrt{ 15 } + 2 \sqrt{ 15 } + \color{#FF6800}{ 6 } } { 4 }$
$\dfrac { \color{#FF6800}{ 10 } + 2 \sqrt{ 15 } + 2 \sqrt{ 15 } \color{#FF6800}{ + } \color{#FF6800}{ 6 } } { 4 }$
$ $ Add $ 10 $ and $ 6$
$\dfrac { \color{#FF6800}{ 16 } + 2 \sqrt{ 15 } + 2 \sqrt{ 15 } } { 4 }$
$\dfrac { 16 + \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 15 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 15 } } } { 4 }$
$ $ Calculate between similar terms $ $
$\dfrac { 16 + \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 15 } } } { 4 }$
$\color{#FF6800}{ \dfrac { 16 + 4 \sqrt{ 15 } } { 4 } }$
$ $ Reduce the fraction $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 15 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple-logo
google-play-logo