# Calculator search results

Formula
Calculate the value
$\dfrac{ \left( \sqrt{ 2 } +2 \right) ^{ 2 } }{ \sqrt{ 2 } } + \left( \sqrt{ 2 } +2 \right) \left( \sqrt{ 2 } -2 \right)$
$3 \sqrt{ 2 } + 2$
Calculate the value
$\color{#FF6800}{ \dfrac { \left ( \sqrt{ 2 } + 2 \right ) ^ { 2 } } { \sqrt{ 2 } } } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
 Calculate the expression 
$\color{#FF6800}{ \dfrac { \left ( \sqrt{ 2 } + 2 \right ) ^ { 2 } \sqrt{ 2 } } { 2 } } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
$\dfrac { \left ( \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } \sqrt{ 2 } } { 2 } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
 Calculate power 
$\dfrac { \left ( \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right ) \sqrt{ 2 } } { 2 } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
$\color{#FF6800}{ \dfrac { \left ( 4 \sqrt{ 2 } + 6 \right ) \sqrt{ 2 } } { 2 } } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
 Reduce the fraction 
$\left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \sqrt{ \color{#FF6800}{ 2 } } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
$\left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \sqrt{ \color{#FF6800}{ 2 } } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
 Multiply each term in parentheses by $\sqrt{ 2 }$
$\left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } \right ) \sqrt{ \color{#FF6800}{ 2 } } + \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
$\left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } \right ) \sqrt{ \color{#FF6800}{ 2 } } + 3 \sqrt{ 2 } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
 Get rid of unnecessary parentheses 
$\color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } \sqrt{ \color{#FF6800}{ 2 } } + 3 \sqrt{ 2 } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
$\color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } \sqrt{ \color{#FF6800}{ 2 } } + 3 \sqrt{ 2 } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
 Simplify the expression 
$\color{#FF6800}{ 4 } + 3 \sqrt{ 2 } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
$4 + 3 \sqrt{ 2 } + \left ( \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \left ( \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
 Expand the expression using $\left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$4 + 3 \sqrt{ 2 } + \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } }$
$4 + 3 \sqrt{ 2 } + \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } } - 2 ^ { 2 }$
 If you square the radical sign, it will disappear 
$4 + 3 \sqrt{ 2 } + \color{#FF6800}{ 2 } - 2 ^ { 2 }$
$4 + 3 \sqrt{ 2 } + 2 - \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } }$
 Calculate power 
$4 + 3 \sqrt{ 2 } + 2 - \color{#FF6800}{ 4 }$
$\color{#FF6800}{ 4 } + 3 \sqrt{ 2 } + 2 \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
 Remove the two numbers if the values are the same and the signs are different 
$3 \sqrt{ 2 } + 2$
Solution search results