Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$\dfrac{ \left( \sqrt{ 2 } +2 \right) ^{ 2 } }{ \sqrt{ 2 } } + \left( \sqrt{ 2 } +2 \right) \left( \sqrt{ 2 } -2 \right)$
$3 \sqrt{ 2 } + 2$
Calculate the value
$\color{#FF6800}{ \dfrac { \left ( \sqrt{ 2 } + 2 \right ) ^ { 2 } } { \sqrt{ 2 } } } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
$ $ Calculate the expression $ $
$\color{#FF6800}{ \dfrac { \left ( \sqrt{ 2 } + 2 \right ) ^ { 2 } \sqrt{ 2 } } { 2 } } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
$\dfrac { \left ( \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } \sqrt{ 2 } } { 2 } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
$ $ Calculate power $ $
$\dfrac { \left ( \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right ) \sqrt{ 2 } } { 2 } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
$\color{#FF6800}{ \dfrac { \left ( 4 \sqrt{ 2 } + 6 \right ) \sqrt{ 2 } } { 2 } } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
$ $ Reduce the fraction $ $
$\left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \sqrt{ \color{#FF6800}{ 2 } } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
$\left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \sqrt{ \color{#FF6800}{ 2 } } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
$ $ Multiply each term in parentheses by $ \sqrt{ 2 }$
$\left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } \right ) \sqrt{ \color{#FF6800}{ 2 } } + \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
$\left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } \right ) \sqrt{ \color{#FF6800}{ 2 } } + 3 \sqrt{ 2 } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
$ $ Get rid of unnecessary parentheses $ $
$\color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } \sqrt{ \color{#FF6800}{ 2 } } + 3 \sqrt{ 2 } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
$\color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } \sqrt{ \color{#FF6800}{ 2 } } + 3 \sqrt{ 2 } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
$ $ Simplify the expression $ $
$\color{#FF6800}{ 4 } + 3 \sqrt{ 2 } + \left ( \sqrt{ 2 } + 2 \right ) \left ( \sqrt{ 2 } - 2 \right )$
$4 + 3 \sqrt{ 2 } + \left ( \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \left ( \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
$ $ Expand the expression using $ \left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$4 + 3 \sqrt{ 2 } + \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } }$
$4 + 3 \sqrt{ 2 } + \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } } - 2 ^ { 2 }$
$ $ If you square the radical sign, it will disappear $ $
$4 + 3 \sqrt{ 2 } + \color{#FF6800}{ 2 } - 2 ^ { 2 }$
$4 + 3 \sqrt{ 2 } + 2 - \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } }$
$ $ Calculate power $ $
$4 + 3 \sqrt{ 2 } + 2 - \color{#FF6800}{ 4 }$
$\color{#FF6800}{ 4 } + 3 \sqrt{ 2 } + 2 \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$ $ Remove the two numbers if the values are the same and the signs are different $ $
$3 \sqrt{ 2 } + 2$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-The rationalizing factor of \sqrt{23} is 
$°$ $Options^{°}$ $0$ 
A 24 
23 
C \sqrt{23} 
D None of these
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo