Calculator search results

Formula
Solve the system of equations
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$x + y = 800$
$\dfrac { 9 } { 100 } x + \dfrac { 13 } { 100 } y = 80$
$x$-intercept
$\left ( 800 , 0 \right )$
$y$-intercept
$\left ( 0 , 800 \right )$
$x$-intercept
$\left ( \dfrac { 8000 } { 9 } , 0 \right )$
$y$-intercept
$\left ( 0 , \dfrac { 8000 } { 13 } \right )$
$\begin{cases} x+y = 800 \\ \dfrac{ 9 }{ 100 } x+ \dfrac{ 13 }{ 100 } y = 80 \end{cases}$
$x = 600 , y = 200$
Solve quadratic equations using the square root
$\begin{cases} x + y = 800 \\ \color{#FF6800}{ \dfrac { 9 } { 100 } } \color{#FF6800}{ x } + \dfrac { 13 } { 100 } y = 80 \end{cases}$
$ $ Calculate the multiplication expression $ $
$\begin{cases} x + y = 800 \\ \color{#FF6800}{ \dfrac { 9 x } { 100 } } + \dfrac { 13 } { 100 } y = 80 \end{cases}$
$\begin{cases} x + y = 800 \\ \dfrac { 9 x } { 100 } + \color{#FF6800}{ \dfrac { 13 } { 100 } } \color{#FF6800}{ y } = 80 \end{cases}$
$ $ Calculate the multiplication expression $ $
$\begin{cases} x + y = 800 \\ \dfrac { 9 x } { 100 } + \color{#FF6800}{ \dfrac { 13 y } { 100 } } = 80 \end{cases}$
$\begin{cases} x + y = 800 \\ \dfrac { 9 x } { 100 } + \dfrac { 13 y } { 100 } = 80 \end{cases}$
$ $ Solve a solution to $ x$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 800 } \\ \dfrac { 9 x } { 100 } + \dfrac { 13 y } { 100 } = 80 \end{cases}$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 800 } \\ \color{#FF6800}{ \dfrac { 9 x } { 100 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 13 y } { 100 } } = \color{#FF6800}{ 80 } \end{cases}$
$ $ Substitute the given $ x $ value into the equation $ \dfrac { 9 x } { 100 } + \dfrac { 13 y } { 100 } = 80$
$\color{#FF6800}{ \dfrac { 9 \left ( - y + 800 \right ) } { 100 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 13 y } { 100 } } = \color{#FF6800}{ 80 }$
$\color{#FF6800}{ \dfrac { 9 \left ( - y + 800 \right ) } { 100 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 13 y } { 100 } } = \color{#FF6800}{ 80 }$
$ $ Solve a solution to $ y$
$\color{#FF6800}{ y } = \color{#FF6800}{ 200 }$
$\color{#FF6800}{ y } = \color{#FF6800}{ 200 }$
$ $ Substitute the given $ y $ value into the equation $ x = - y + 800$
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 200 } \color{#FF6800}{ + } \color{#FF6800}{ 800 }$
$x = \color{#FF6800}{ - } \color{#FF6800}{ 200 } \color{#FF6800}{ + } \color{#FF6800}{ 800 }$
$ $ Add $ - 200 $ and $ 800$
$x = \color{#FF6800}{ 600 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 600 }$
$ $ The possible solutions are as follows $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 600 } , \color{#FF6800}{ y } = \color{#FF6800}{ 200 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 600 } , \color{#FF6800}{ y } = \color{#FF6800}{ 200 }$
$ $ Check if it is the solution to the system of equations $ $
$\begin{cases} \color{#FF6800}{ 600 } \color{#FF6800}{ + } \color{#FF6800}{ 200 } = \color{#FF6800}{ 800 } \\ \color{#FF6800}{ \dfrac { 9 } { 100 } } \color{#FF6800}{ \times } \color{#FF6800}{ 600 } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 13 } { 100 } } \color{#FF6800}{ \times } \color{#FF6800}{ 200 } = \color{#FF6800}{ 80 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 600 } \color{#FF6800}{ + } \color{#FF6800}{ 200 } = \color{#FF6800}{ 800 } \\ \color{#FF6800}{ \dfrac { 9 } { 100 } } \color{#FF6800}{ \times } \color{#FF6800}{ 600 } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 13 } { 100 } } \color{#FF6800}{ \times } \color{#FF6800}{ 200 } = \color{#FF6800}{ 80 } \end{cases}$
$ $ Simplify the equality $ $
$\begin{cases} \color{#FF6800}{ 800 } = \color{#FF6800}{ 800 } \\ \color{#FF6800}{ 80 } = \color{#FF6800}{ 80 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 800 } = \color{#FF6800}{ 800 } \\ \color{#FF6800}{ 80 } = \color{#FF6800}{ 80 } \end{cases}$
$ $ Since it is true in both equations, it is the solution of the system of equations $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 600 } , \color{#FF6800}{ y } = \color{#FF6800}{ 200 }$
$\begin{cases} x = 600 \\ y = 200 \end{cases}$
Solve quadratic equations using the square root
$\begin{cases} \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } = \color{#FF6800}{ 800 } \\ \color{#FF6800}{ \dfrac { 9 } { 100 } } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 13 } { 100 } } \color{#FF6800}{ y } = \color{#FF6800}{ 80 } \end{cases}$
$ $ Solve the system of linear equations for $ x , y $
$\begin{cases} \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } = \color{#FF6800}{ 800 } \\ \color{#FF6800}{ \dfrac { 1 } { 25 } } \color{#FF6800}{ y } = \color{#FF6800}{ 8 } \end{cases}$
$\begin{cases} \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } = \color{#FF6800}{ 800 } \\ \color{#FF6800}{ \dfrac { 1 } { 25 } } \color{#FF6800}{ y } = \color{#FF6800}{ 8 } \end{cases}$
$ $ Solve the system of linear equations for $ x , y $
$\begin{cases} \color{#FF6800}{ \dfrac { 1 } { 25 } } \color{#FF6800}{ x } = \color{#FF6800}{ 24 } \\ \color{#FF6800}{ \dfrac { 1 } { 25 } } \color{#FF6800}{ y } = \color{#FF6800}{ 8 } \end{cases}$
$\begin{cases} \color{#FF6800}{ \dfrac { 1 } { 25 } } \color{#FF6800}{ x } = \color{#FF6800}{ 24 } \\ \dfrac { 1 } { 25 } y = 8 \end{cases}$
$ $ Solve a solution to $ x$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 600 } \\ \dfrac { 1 } { 25 } y = 8 \end{cases}$
$\begin{cases} x = 600 \\ \color{#FF6800}{ \dfrac { 1 } { 25 } } \color{#FF6800}{ y } = \color{#FF6800}{ 8 } \end{cases}$
$ $ Solve a solution to $ y$
$\begin{cases} x = 600 \\ \color{#FF6800}{ y } = \color{#FF6800}{ 200 } \end{cases}$
$ $ 그래프 보기 $ $
Graph
Solution search results
search-thumbnail-$∩$ $∩1$ 
$ \begin{cases} 3\left(x-1\right)-2\left(1+x\right)<1 \\ 3x-11>0 \end{cases} $ $ \begin{cases} 3x-3-2+2x47 \\ 3x-4>0 \end{cases} $ 
$ \begin{cases} x<7+5 \\ 222l+4 \end{cases} $ $ \begin{cases} x<6 \\ 3x>4 \end{cases} $
1st-6th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo