Symbol

# Calculator search results

Formula
Solve the system of equations
Graph
$x + y = 730$
$- \dfrac { 5 } { 100 } x + \dfrac { 6 } { 100 } y = 2$
$x$Intercept
$\left ( 730 , 0 \right )$
$y$Intercept
$\left ( 0 , 730 \right )$
$x$Intercept
$\left ( - 40 , 0 \right )$
$y$Intercept
$\left ( 0 , \dfrac { 100 } { 3 } \right )$
$\begin{cases} x+y = 730 \\- \dfrac{ 5 }{ 100 } x+ \dfrac{ 6 }{ 100 } y = 2 \end{cases}$
$x = 380 , y = 350$
Solve the system of equations
$\begin{cases} x + y = 730 \\ \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 5 } { 100 } } \color{#FF6800}{ x } + \dfrac { 6 } { 100 } y = 2 \end{cases}$
 Calculate the multiplication expression 
$\begin{cases} x + y = 730 \\ \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { x } { 20 } } + \dfrac { 6 } { 100 } y = 2 \end{cases}$
$\begin{cases} x + y = 730 \\ - \dfrac { x } { 20 } + \color{#FF6800}{ \dfrac { 6 } { 100 } } \color{#FF6800}{ y } = 2 \end{cases}$
 Calculate the multiplication expression 
$\begin{cases} x + y = 730 \\ - \dfrac { x } { 20 } + \color{#FF6800}{ \dfrac { 3 y } { 50 } } = 2 \end{cases}$
$\begin{cases} x + y = 730 \\ - \dfrac { x } { 20 } + \dfrac { 3 y } { 50 } = 2 \end{cases}$
 Solve a solution to $x$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 730 } \\ - \dfrac { x } { 20 } + \dfrac { 3 y } { 50 } = 2 \end{cases}$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 730 } \\ \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { x } { 20 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 3 y } { 50 } } = \color{#FF6800}{ 2 } \end{cases}$
 Substitute the given $x$ value into the equation $- \dfrac { x } { 20 } + \dfrac { 3 y } { 50 } = 2$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { - y + 730 } { 20 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 3 y } { 50 } } = \color{#FF6800}{ 2 }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { - y + 730 } { 20 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 3 y } { 50 } } = \color{#FF6800}{ 2 }$
 Solve a solution to $y$
$\color{#FF6800}{ y } = \color{#FF6800}{ 350 }$
$\color{#FF6800}{ y } = \color{#FF6800}{ 350 }$
 Substitute the given $y$ value into the equation $x = - y + 730$
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 350 } \color{#FF6800}{ + } \color{#FF6800}{ 730 }$
$x = \color{#FF6800}{ - } \color{#FF6800}{ 350 } \color{#FF6800}{ + } \color{#FF6800}{ 730 }$
 Add $- 350$ and $730$
$x = \color{#FF6800}{ 380 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 380 }$
 The possible solutions are as follows 
$\color{#FF6800}{ x } = \color{#FF6800}{ 380 } , \color{#FF6800}{ y } = \color{#FF6800}{ 350 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 380 } , \color{#FF6800}{ y } = \color{#FF6800}{ 350 }$
 Check if it is the solution to the system of equations 
$\begin{cases} \color{#FF6800}{ 380 } \color{#FF6800}{ + } \color{#FF6800}{ 350 } = \color{#FF6800}{ 730 } \\ \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 5 } { 100 } } \color{#FF6800}{ \times } \color{#FF6800}{ 380 } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 6 } { 100 } } \color{#FF6800}{ \times } \color{#FF6800}{ 350 } = \color{#FF6800}{ 2 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 380 } \color{#FF6800}{ + } \color{#FF6800}{ 350 } = \color{#FF6800}{ 730 } \\ \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 5 } { 100 } } \color{#FF6800}{ \times } \color{#FF6800}{ 380 } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 6 } { 100 } } \color{#FF6800}{ \times } \color{#FF6800}{ 350 } = \color{#FF6800}{ 2 } \end{cases}$
 Simplify the equality 
$\begin{cases} \color{#FF6800}{ 730 } = \color{#FF6800}{ 730 } \\ \color{#FF6800}{ 2 } = \color{#FF6800}{ 2 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 730 } = \color{#FF6800}{ 730 } \\ \color{#FF6800}{ 2 } = \color{#FF6800}{ 2 } \end{cases}$
 Since it is true in both equations, it is the solution of the system of equations 
$\color{#FF6800}{ x } = \color{#FF6800}{ 380 } , \color{#FF6800}{ y } = \color{#FF6800}{ 350 }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture