Calculator search results

Formula
Solve the system of equations
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$x + y = 10$
$10 x + 8 y = 88$
$x$-intercept
$\left ( 10 , 0 \right )$
$y$-intercept
$\left ( 0 , 10 \right )$
$x$-intercept
$\left ( \dfrac { 44 } { 5 } , 0 \right )$
$y$-intercept
$\left ( 0 , 11 \right )$
$\begin{cases} x+y = 10 \\10x+8y = 88 \end{cases}$
$x = 4 , y = 6$
Solve quadratic equations using the square root
$\begin{cases} x + y = 10 \\ 10 x + 8 y = 88 \end{cases}$
$ $ Solve a solution to $ x$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \\ 10 x + 8 y = 88 \end{cases}$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \\ \color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ y } = \color{#FF6800}{ 88 } \end{cases}$
$ $ Substitute the given $ x $ value into the equation $ 10 x + 8 y = 88$
$\color{#FF6800}{ 10 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ y } = \color{#FF6800}{ 88 }$
$\color{#FF6800}{ 10 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ y } = \color{#FF6800}{ 88 }$
$ $ Solve a solution to $ y$
$\color{#FF6800}{ y } = \color{#FF6800}{ 6 }$
$\color{#FF6800}{ y } = \color{#FF6800}{ 6 }$
$ $ Substitute the given $ y $ value into the equation $ x = - y + 10$
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 10 }$
$x = \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 10 }$
$ $ Add $ - 6 $ and $ 10$
$x = \color{#FF6800}{ 4 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 4 }$
$ $ The possible solutions are as follows $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 4 } , \color{#FF6800}{ y } = \color{#FF6800}{ 6 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 4 } , \color{#FF6800}{ y } = \color{#FF6800}{ 6 }$
$ $ Check if it is the solution to the system of equations $ $
$\begin{cases} \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 6 } = \color{#FF6800}{ 10 } \\ \color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 } = \color{#FF6800}{ 88 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 6 } = \color{#FF6800}{ 10 } \\ \color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 } = \color{#FF6800}{ 88 } \end{cases}$
$ $ Simplify the equality $ $
$\begin{cases} \color{#FF6800}{ 10 } = \color{#FF6800}{ 10 } \\ \color{#FF6800}{ 88 } = \color{#FF6800}{ 88 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 10 } = \color{#FF6800}{ 10 } \\ \color{#FF6800}{ 88 } = \color{#FF6800}{ 88 } \end{cases}$
$ $ Since it is true in both equations, it is the solution of the system of equations $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 4 } , \color{#FF6800}{ y } = \color{#FF6800}{ 6 }$
$\begin{cases} x = 4 \\ y = 6 \end{cases}$
Solve quadratic equations using the square root
$\begin{cases} \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } = \color{#FF6800}{ 10 } \\ \color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ y } = \color{#FF6800}{ 88 } \end{cases}$
$ $ Solve the system of linear equations for $ x , y $
$\begin{cases} \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } = \color{#FF6800}{ 10 } \\ \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ 12 } \end{cases}$
$\begin{cases} \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } = \color{#FF6800}{ 10 } \\ \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ 12 } \end{cases}$
$ $ Solve the system of linear equations for $ x , y $
$\begin{cases} \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 8 } \\ \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ 12 } \end{cases}$
$\begin{cases} \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 8 } \\ - 2 y = - 12 \end{cases}$
$ $ Solve a solution to $ x$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 4 } \\ - 2 y = - 12 \end{cases}$
$\begin{cases} x = 4 \\ \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ 12 } \end{cases}$
$ $ Solve a solution to $ y$
$\begin{cases} x = 4 \\ \color{#FF6800}{ y } = \color{#FF6800}{ 6 } \end{cases}$
$ $ 그래프 보기 $ $
Graph
Solution search results
search-thumbnail-eupe 
$1$ $ \begin{cases} -5x+y=10 \\ 10x-2y=-8 \end{cases} $
7th-9th grade
Algebra
search-thumbnail-
$ \begin{cases} 2x+y=10 \\ 5x-y=18 \end{cases} $ 
$ \begin{cases} 2x+5y=31 \\ 6x-2y=-26 \end{cases} $
7th-9th grade
Algebra
search-thumbnail-$ \begin{cases} x+y=100 \\ 10x+6y=900 \end{cases} $
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo