Symbol

# Calculator search results

Formula
Solve the system of equations
Graph
$x = y + 15$
$60 x = 90 y$
$x$Intercept
$\left ( 15 , 0 \right )$
$y$Intercept
$\left ( 0 , - 15 \right )$
$x$Intercept
$\left ( 0 , 0 \right )$
$y$Intercept
$\left ( 0 , 0 \right )$
$\begin{cases} x = y+15 \\60x = 90y \end{cases}$
$x = 45 , y = 30$
Solve the system of equations
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \\ \color{#FF6800}{ 60 } \color{#FF6800}{ x } = \color{#FF6800}{ 90 } \color{#FF6800}{ y } \end{cases}$
 Substitute the given $x$ value into the equation $60 x = 90 y$
$\color{#FF6800}{ 60 } \left ( \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \right ) = \color{#FF6800}{ 90 } \color{#FF6800}{ y }$
$\color{#FF6800}{ 60 } \left ( \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \right ) = \color{#FF6800}{ 90 } \color{#FF6800}{ y }$
 Solve a solution to $y$
$\color{#FF6800}{ y } = \color{#FF6800}{ 30 }$
$\color{#FF6800}{ y } = \color{#FF6800}{ 30 }$
 Substitute the given $y$ value into the equation $x = y + 15$
$\color{#FF6800}{ x } = \color{#FF6800}{ 30 } \color{#FF6800}{ + } \color{#FF6800}{ 15 }$
$x = \color{#FF6800}{ 30 } \color{#FF6800}{ + } \color{#FF6800}{ 15 }$
 Add $30$ and $15$
$x = \color{#FF6800}{ 45 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 45 }$
 The possible solutions are as follows 
$\color{#FF6800}{ x } = \color{#FF6800}{ 45 } , \color{#FF6800}{ y } = \color{#FF6800}{ 30 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 45 } , \color{#FF6800}{ y } = \color{#FF6800}{ 30 }$
 Check if it is the solution to the system of equations 
$\begin{cases} \color{#FF6800}{ 45 } = \color{#FF6800}{ 30 } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \\ \color{#FF6800}{ 60 } \color{#FF6800}{ \times } \color{#FF6800}{ 45 } = \color{#FF6800}{ 90 } \color{#FF6800}{ \times } \color{#FF6800}{ 30 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 45 } = \color{#FF6800}{ 30 } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \\ \color{#FF6800}{ 60 } \color{#FF6800}{ \times } \color{#FF6800}{ 45 } = \color{#FF6800}{ 90 } \color{#FF6800}{ \times } \color{#FF6800}{ 30 } \end{cases}$
 Simplify the equality 
$\begin{cases} \color{#FF6800}{ 45 } = \color{#FF6800}{ 45 } \\ \color{#FF6800}{ 2700 } = \color{#FF6800}{ 2700 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 45 } = \color{#FF6800}{ 45 } \\ \color{#FF6800}{ 2700 } = \color{#FF6800}{ 2700 } \end{cases}$
 Since it is true in both equations, it is the solution of the system of equations 
$\color{#FF6800}{ x } = \color{#FF6800}{ 45 } , \color{#FF6800}{ y } = \color{#FF6800}{ 30 }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture