qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Solve the system of equations
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$95 x + 20 y = 800$
$20 x - 4 y = - 100$
$x$Intercept
$\left ( \dfrac { 160 } { 19 } , 0 \right )$
$y$Intercept
$\left ( 0 , 40 \right )$
$x$Intercept
$\left ( - 5 , 0 \right )$
$y$Intercept
$\left ( 0 , 25 \right )$
$\begin{cases} 95x+20y = 800 \\20x-4y = -100 \end{cases}$
$x = \dfrac { 20 } { 13 } , y = \dfrac { 425 } { 13 }$
Solve quadratic equations using the square root
$\begin{cases} 95 x + 20 y = 800 \\ 20 x - 4 y = - 100 \end{cases}$
$ $ Solve a solution to $ x$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 4 } { 19 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 160 } { 19 } } \\ 20 x - 4 y = - 100 \end{cases}$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 4 } { 19 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 160 } { 19 } } \\ \color{#FF6800}{ 20 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ 100 } \end{cases}$
$ $ Substitute the given $ x $ value into the equation $ 20 x - 4 y = - 100$
$\color{#FF6800}{ 20 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 4 } { 19 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 160 } { 19 } } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ 100 }$
$\color{#FF6800}{ 20 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 4 } { 19 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 160 } { 19 } } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ 100 }$
$ $ Solve a solution to $ y$
$\color{#FF6800}{ y } = \color{#FF6800}{ \dfrac { 425 } { 13 } }$
$\color{#FF6800}{ y } = \color{#FF6800}{ \dfrac { 425 } { 13 } }$
$ $ Substitute the given $ y $ value into the equation $ x = - \dfrac { 4 } { 19 } y + \dfrac { 160 } { 19 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 4 } { 19 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 425 } { 13 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 160 } { 19 } }$
$x = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 4 } { 19 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 425 } { 13 } } + \dfrac { 160 } { 19 }$
$ $ Calculate the product of rational numbers $ $
$x = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1700 } { 247 } } + \dfrac { 160 } { 19 }$
$x = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1700 } { 247 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 160 } { 19 } }$
$ $ Find the sum or difference of the fractions $ $
$x = \color{#FF6800}{ \dfrac { 20 } { 13 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 20 } { 13 } }$
$ $ The possible solutions are as follows $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 20 } { 13 } } , \color{#FF6800}{ y } = \color{#FF6800}{ \dfrac { 425 } { 13 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 20 } { 13 } } , \color{#FF6800}{ y } = \color{#FF6800}{ \dfrac { 425 } { 13 } }$
$ $ Check if it is the solution to the system of equations $ $
$\begin{cases} \color{#FF6800}{ 95 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 20 } { 13 } } \color{#FF6800}{ + } \color{#FF6800}{ 20 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 425 } { 13 } } = \color{#FF6800}{ 800 } \\ \color{#FF6800}{ 20 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 20 } { 13 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 425 } { 13 } } = \color{#FF6800}{ - } \color{#FF6800}{ 100 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 95 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 20 } { 13 } } \color{#FF6800}{ + } \color{#FF6800}{ 20 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 425 } { 13 } } = \color{#FF6800}{ 800 } \\ \color{#FF6800}{ 20 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 20 } { 13 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 425 } { 13 } } = \color{#FF6800}{ - } \color{#FF6800}{ 100 } \end{cases}$
$ $ Simplify the equality $ $
$\begin{cases} \color{#FF6800}{ 800 } = \color{#FF6800}{ 800 } \\ \color{#FF6800}{ - } \color{#FF6800}{ 100 } = \color{#FF6800}{ - } \color{#FF6800}{ 100 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 800 } = \color{#FF6800}{ 800 } \\ \color{#FF6800}{ - } \color{#FF6800}{ 100 } = \color{#FF6800}{ - } \color{#FF6800}{ 100 } \end{cases}$
$ $ Since it is true in both equations, it is the solution of the system of equations $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 20 } { 13 } } , \color{#FF6800}{ y } = \color{#FF6800}{ \dfrac { 425 } { 13 } }$
$ $ 그래프 보기 $ $
Graph
Solution search results
search-thumbnail-$∩$ $∩1$ 
$ \begin{cases} 3\left(x-1\right)-2\left(1+x\right)<1 \\ 3x-11>0 \end{cases} $ $ \begin{cases} 3x-3-2+2x47 \\ 3x-4>0 \end{cases} $ 
$ \begin{cases} x<7+5 \\ 222l+4 \end{cases} $ $ \begin{cases} x<6 \\ 3x>4 \end{cases} $
1st-6th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo