$\begin{cases} 4 x + 3 y = 5 \\ 3 x - 4 y = 10 \end{cases}$
$ $ Solve a solution to $ x$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 4 } } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 5 } } { \color{#FF6800}{ 4 } } } \\ 3 x - 4 y = 10 \end{cases}$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 4 } } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 5 } } { \color{#FF6800}{ 4 } } } \\ \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ y } = \color{#FF6800}{ 10 } \end{cases}$
$ $ Substitute the given $ x $ value into the equation $ 3 x - 4 y = 10$
$\color{#FF6800}{ 3 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 4 } } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 5 } } { \color{#FF6800}{ 4 } } } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ y } = \color{#FF6800}{ 10 }$
$\color{#FF6800}{ 3 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 4 } } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 5 } } { \color{#FF6800}{ 4 } } } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ y } = \color{#FF6800}{ 10 }$
$ $ Solve a solution to $ y$
$\color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$ $ Substitute the given $ y $ value into the equation $ x = - \dfrac { 3 } { 4 } y + \dfrac { 5 } { 4 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 4 } } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 5 } } { \color{#FF6800}{ 4 } } }$
$x = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 4 } } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) + \dfrac { 5 } { 4 }$
$ $ Calculate the product of rational numbers $ $
$x = \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 4 } } } + \dfrac { 5 } { 4 }$
$x = \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 4 } } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 5 } } { \color{#FF6800}{ 4 } } }$
$ $ Find the sum of the fractions $ $
$x = \color{#FF6800}{ 2 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 2 }$
$ $ The possible solutions are as follows $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 2 } , \color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 2 } , \color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$ $ Check if it is the solution to the system of equations $ $
$\begin{cases} \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) = \color{#FF6800}{ 5 } \\ \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) = \color{#FF6800}{ 10 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) = \color{#FF6800}{ 5 } \\ \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) = \color{#FF6800}{ 10 } \end{cases}$
$ $ Simplify the equality $ $
$\begin{cases} \color{#FF6800}{ 5 } = \color{#FF6800}{ 5 } \\ \color{#FF6800}{ 10 } = \color{#FF6800}{ 10 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 5 } = \color{#FF6800}{ 5 } \\ \color{#FF6800}{ 10 } = \color{#FF6800}{ 10 } \end{cases}$
$ $ Since it is true in both equations, it is the solution of the system of equations $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 2 } , \color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ 1 }$