$\begin{cases} 3 x - 4 y = - 6 \\ 2 x + 4 y = 16 \end{cases}$
$ $ Solve a solution to $ x$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 4 } { 3 } } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \\ 2 x + 4 y = 16 \end{cases}$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 4 } { 3 } } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \\ \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } = \color{#FF6800}{ 16 } \end{cases}$
$ $ Substitute the given $ x $ value into the equation $ 2 x + 4 y = 16$
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ \dfrac { 4 } { 3 } } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } = \color{#FF6800}{ 16 }$
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ \dfrac { 4 } { 3 } } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } = \color{#FF6800}{ 16 }$
$ $ Solve a solution to $ y$
$\color{#FF6800}{ y } = \color{#FF6800}{ 3 }$
$\color{#FF6800}{ y } = \color{#FF6800}{ 3 }$
$ $ Substitute the given $ y $ value into the equation $ x = \dfrac { 4 } { 3 } y - 2$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 4 } { 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$x = \color{#FF6800}{ \dfrac { 4 } { 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } - 2$
$ $ Calculate the product of rational numbers $ $
$x = \color{#FF6800}{ 4 } - 2$
$x = \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$ $ Subtract $ 2 $ from $ 4$
$x = \color{#FF6800}{ 2 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 2 }$
$ $ The possible solutions are as follows $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 2 } , \color{#FF6800}{ y } = \color{#FF6800}{ 3 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 2 } , \color{#FF6800}{ y } = \color{#FF6800}{ 3 }$
$ $ Check if it is the solution to the system of equations $ $
$\begin{cases} \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } = \color{#FF6800}{ - } \color{#FF6800}{ 6 } \\ \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } = \color{#FF6800}{ 16 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } = \color{#FF6800}{ - } \color{#FF6800}{ 6 } \\ \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } = \color{#FF6800}{ 16 } \end{cases}$
$ $ Simplify the equality $ $
$\begin{cases} \color{#FF6800}{ - } \color{#FF6800}{ 6 } = \color{#FF6800}{ - } \color{#FF6800}{ 6 } \\ \color{#FF6800}{ 16 } = \color{#FF6800}{ 16 } \end{cases}$
$\begin{cases} \color{#FF6800}{ - } \color{#FF6800}{ 6 } = \color{#FF6800}{ - } \color{#FF6800}{ 6 } \\ \color{#FF6800}{ 16 } = \color{#FF6800}{ 16 } \end{cases}$
$ $ Since it is true in both equations, it is the solution of the system of equations $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 2 } , \color{#FF6800}{ y } = \color{#FF6800}{ 3 }$