Symbol

Calculator search results

Formula
Solve the system of equations
Graph
$3 x + 3 y = 1$
$2 x + 6 y = 1$
$x$Intercept
$\left ( \dfrac { 1 } { 3 } , 0 \right )$
$y$Intercept
$\left ( 0 , \dfrac { 1 } { 3 } \right )$
$x$Intercept
$\left ( \dfrac { 1 } { 2 } , 0 \right )$
$y$Intercept
$\left ( 0 , \dfrac { 1 } { 6 } \right )$
$\begin{cases} 3x+3y = 1 \\2x+6y = 1 \end{cases}$
$x = \dfrac { 1 } { 4 } , y = \dfrac { 1 } { 12 }$
Solve the system of equations
$\begin{cases} 3 x + 3 y = 1 \\ 2 x + 6 y = 1 \end{cases}$
 Solve a solution to $x$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 1 } { 3 } } \\ 2 x + 6 y = 1 \end{cases}$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 1 } { 3 } } \\ \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ y } = \color{#FF6800}{ 1 } \end{cases}$
 Substitute the given $x$ value into the equation $2 x + 6 y = 1$
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 1 } { 3 } } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ y } = \color{#FF6800}{ 1 }$
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 1 } { 3 } } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ y } = \color{#FF6800}{ 1 }$
 Solve a solution to $y$
$\color{#FF6800}{ y } = \color{#FF6800}{ \dfrac { 1 } { 12 } }$
$\color{#FF6800}{ y } = \color{#FF6800}{ \dfrac { 1 } { 12 } }$
 Substitute the given $y$ value into the equation $x = - y + \dfrac { 1 } { 3 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 12 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 1 } { 3 } }$
$x = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 12 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 1 } { 3 } }$
 Find the sum or difference of the fractions 
$x = \color{#FF6800}{ \dfrac { 1 } { 4 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 1 } { 4 } }$
 The possible solutions are as follows 
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 1 } { 4 } } , \color{#FF6800}{ y } = \color{#FF6800}{ \dfrac { 1 } { 12 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 1 } { 4 } } , \color{#FF6800}{ y } = \color{#FF6800}{ \dfrac { 1 } { 12 } }$
 Check if it is the solution to the system of equations 
$\begin{cases} \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 12 } } = \color{#FF6800}{ 1 } \\ \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 12 } } = \color{#FF6800}{ 1 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 12 } } = \color{#FF6800}{ 1 } \\ \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 12 } } = \color{#FF6800}{ 1 } \end{cases}$
 Simplify the equality 
$\begin{cases} \color{#FF6800}{ 1 } = \color{#FF6800}{ 1 } \\ \color{#FF6800}{ 1 } = \color{#FF6800}{ 1 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 1 } = \color{#FF6800}{ 1 } \\ \color{#FF6800}{ 1 } = \color{#FF6800}{ 1 } \end{cases}$
 Since it is true in both equations, it is the solution of the system of equations 
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 1 } { 4 } } , \color{#FF6800}{ y } = \color{#FF6800}{ \dfrac { 1 } { 12 } }$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture