Calculator search results

Formula
Solve the system of equations
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$0.3 x + 0.4 y = 1.7$
$\dfrac { 2 } { 3 } x + \dfrac { 1 } { 2 } y = 3$
$x$-intercept
$\left ( \dfrac { 17 } { 3 } , 0 \right )$
$y$-intercept
$\left ( 0 , \dfrac { 17 } { 4 } \right )$
$x$-intercept
$\left ( \dfrac { 9 } { 2 } , 0 \right )$
$y$-intercept
$\left ( 0 , 6 \right )$
$\begin{cases} 0.3x+0.4y = 1.7 \\ \dfrac{ 2 }{ 3 } x+ \dfrac{ 1 }{ 2 } y = 3 \end{cases}$
$x = 3 , y = 2$
Solve quadratic equations using the square root
$\begin{cases} \color{#FF6800}{ 0.3 } \color{#FF6800}{ x } + 0.4 y = 1.7 \\ \dfrac { 2 } { 3 } x + \dfrac { 1 } { 2 } y = 3 \end{cases}$
$ $ Calculate the multiplication expression $ $
$\begin{cases} \color{#FF6800}{ \dfrac { 3 x } { 10 } } + 0.4 y = 1.7 \\ \dfrac { 2 } { 3 } x + \dfrac { 1 } { 2 } y = 3 \end{cases}$
$\begin{cases} \dfrac { 3 x } { 10 } + \color{#FF6800}{ 0.4 } \color{#FF6800}{ y } = 1.7 \\ \dfrac { 2 } { 3 } x + \dfrac { 1 } { 2 } y = 3 \end{cases}$
$ $ Calculate the multiplication expression $ $
$\begin{cases} \dfrac { 3 x } { 10 } + \color{#FF6800}{ \dfrac { 2 y } { 5 } } = 1.7 \\ \dfrac { 2 } { 3 } x + \dfrac { 1 } { 2 } y = 3 \end{cases}$
$\begin{cases} \dfrac { 3 x } { 10 } + \dfrac { 2 y } { 5 } = \color{#FF6800}{ 1.7 } \\ \dfrac { 2 } { 3 } x + \dfrac { 1 } { 2 } y = 3 \end{cases}$
$ $ Convert decimals to fractions $ $
$\begin{cases} \dfrac { 3 x } { 10 } + \dfrac { 2 y } { 5 } = \color{#FF6800}{ \dfrac { 17 } { 10 } } \\ \dfrac { 2 } { 3 } x + \dfrac { 1 } { 2 } y = 3 \end{cases}$
$\begin{cases} \dfrac { 3 x } { 10 } + \dfrac { 2 y } { 5 } = \dfrac { 17 } { 10 } \\ \color{#FF6800}{ \dfrac { 2 } { 3 } } \color{#FF6800}{ x } + \dfrac { 1 } { 2 } y = 3 \end{cases}$
$ $ Calculate the multiplication expression $ $
$\begin{cases} \dfrac { 3 x } { 10 } + \dfrac { 2 y } { 5 } = \dfrac { 17 } { 10 } \\ \color{#FF6800}{ \dfrac { 2 x } { 3 } } + \dfrac { 1 } { 2 } y = 3 \end{cases}$
$\begin{cases} \dfrac { 3 x } { 10 } + \dfrac { 2 y } { 5 } = \dfrac { 17 } { 10 } \\ \dfrac { 2 x } { 3 } + \color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ y } = 3 \end{cases}$
$ $ Calculate the multiplication expression $ $
$\begin{cases} \dfrac { 3 x } { 10 } + \dfrac { 2 y } { 5 } = \dfrac { 17 } { 10 } \\ \dfrac { 2 x } { 3 } + \color{#FF6800}{ \dfrac { y } { 2 } } = 3 \end{cases}$
$\begin{cases} \dfrac { 3 x } { 10 } + \dfrac { 2 y } { 5 } = \dfrac { 17 } { 10 } \\ \dfrac { 2 x } { 3 } + \dfrac { y } { 2 } = 3 \end{cases}$
$ $ Solve a solution to $ x$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 4 } { 3 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 17 } { 3 } } \\ \dfrac { 2 x } { 3 } + \dfrac { y } { 2 } = 3 \end{cases}$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 4 } { 3 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 17 } { 3 } } \\ \color{#FF6800}{ \dfrac { 2 x } { 3 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { y } { 2 } } = \color{#FF6800}{ 3 } \end{cases}$
$ $ Substitute the given $ x $ value into the equation $ \dfrac { 2 x } { 3 } + \dfrac { y } { 2 } = 3$
$\color{#FF6800}{ \dfrac { 2 \left ( - \dfrac { 4 } { 3 } y + \dfrac { 17 } { 3 } \right ) } { 3 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { y } { 2 } } = \color{#FF6800}{ 3 }$
$\color{#FF6800}{ \dfrac { 2 \left ( - \dfrac { 4 } { 3 } y + \dfrac { 17 } { 3 } \right ) } { 3 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { y } { 2 } } = \color{#FF6800}{ 3 }$
$ $ Solve a solution to $ y$
$\color{#FF6800}{ y } = \color{#FF6800}{ 2 }$
$\color{#FF6800}{ y } = \color{#FF6800}{ 2 }$
$ $ Substitute the given $ y $ value into the equation $ x = - \dfrac { 4 } { 3 } y + \dfrac { 17 } { 3 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 4 } { 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 17 } { 3 } }$
$x = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 4 } { 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } + \dfrac { 17 } { 3 }$
$ $ Calculate the product of rational numbers $ $
$x = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 8 } { 3 } } + \dfrac { 17 } { 3 }$
$x = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 8 } { 3 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 17 } { 3 } }$
$ $ Find the sum or difference of the fractions $ $
$x = \color{#FF6800}{ 3 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 3 }$
$ $ The possible solutions are as follows $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 3 } , \color{#FF6800}{ y } = \color{#FF6800}{ 2 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 3 } , \color{#FF6800}{ y } = \color{#FF6800}{ 2 }$
$ $ Check if it is the solution to the system of equations $ $
$\begin{cases} \color{#FF6800}{ 0.3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 0.4 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } = \color{#FF6800}{ 1.7 } \\ \color{#FF6800}{ \dfrac { 2 } { 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } = \color{#FF6800}{ 3 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 0.3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 0.4 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } = \color{#FF6800}{ 1.7 } \\ \color{#FF6800}{ \dfrac { 2 } { 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } = \color{#FF6800}{ 3 } \end{cases}$
$ $ Simplify the equality $ $
$\begin{cases} \color{#FF6800}{ \dfrac { 17 } { 10 } } = \color{#FF6800}{ \dfrac { 17 } { 10 } } \\ \color{#FF6800}{ 3 } = \color{#FF6800}{ 3 } \end{cases}$
$\begin{cases} \color{#FF6800}{ \dfrac { 17 } { 10 } } = \color{#FF6800}{ \dfrac { 17 } { 10 } } \\ \color{#FF6800}{ 3 } = \color{#FF6800}{ 3 } \end{cases}$
$ $ Since it is true in both equations, it is the solution of the system of equations $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 3 } , \color{#FF6800}{ y } = \color{#FF6800}{ 2 }$
$\begin{cases} x = 3 \\ y = 2 \end{cases}$
Solve quadratic equations using the square root
$\begin{cases} \color{#FF6800}{ 0.3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 0.4 } \color{#FF6800}{ y } = \color{#FF6800}{ 1.7 } \\ \color{#FF6800}{ \dfrac { 2 } { 3 } } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ y } = \color{#FF6800}{ 3 } \end{cases}$
$ $ Solve the system of linear equations for $ x , y $
$\begin{cases} \color{#FF6800}{ 0.3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 0.4 } \color{#FF6800}{ y } = \color{#FF6800}{ 1.7 } \\ \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 7 } { 60 } } \color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 7 } { 30 } } \end{cases}$
$\begin{cases} \color{#FF6800}{ 0.3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 0.4 } \color{#FF6800}{ y } = \color{#FF6800}{ 1.7 } \\ \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 7 } { 60 } } \color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 7 } { 30 } } \end{cases}$
$ $ Solve the system of linear equations for $ x , y $
$\begin{cases} \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 7 } { 200 } } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 21 } { 200 } } \\ \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 7 } { 60 } } \color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 7 } { 30 } } \end{cases}$
$\begin{cases} \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 7 } { 200 } } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 21 } { 200 } } \\ - \dfrac { 7 } { 60 } y = - \dfrac { 7 } { 30 } \end{cases}$
$ $ Solve a solution to $ x$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 3 } \\ - \dfrac { 7 } { 60 } y = - \dfrac { 7 } { 30 } \end{cases}$
$\begin{cases} x = 3 \\ \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 7 } { 60 } } \color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 7 } { 30 } } \end{cases}$
$ $ Solve a solution to $ y$
$\begin{cases} x = 3 \\ \color{#FF6800}{ y } = \color{#FF6800}{ 2 } \end{cases}$
$ $ 그래프 보기 $ $
Graph
Solution search results
search-thumbnail-$0725$ 
와 해가 
다음 중 연립방정식 $ \begin{cases} 0.75x-0.4y=1 \\ 0.3x+0.4y=3.2 \end{cases} $ ... 
같은 연립방정식은? 
$①$ $ \begin{cases} 7x+5y=3 \\ x+2y=-6 \end{cases} $ $②$ $ \begin{cases} 7x+5y=15 \\ x-2y=13 \end{cases} $ 
$③$ $ \begin{cases} 7x-5y=3 \\ 2x+y=13 \end{cases} $ $④$ $ \begin{cases} 7x-5y=15 \\ 2x+y=14 \end{cases} $ $\left(17$ 
$5\right)$ $ \begin{cases} 7x-5y=-3 \\ 2x-y=-3 \end{cases} $ $26$
10th-13th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo