qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Solve the system of equations
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$\dfrac { x } { 100 } \times 100 + \dfrac { y } { 100 } \times 200 = 21$
$\dfrac { x } { 100 } \times 200 + \dfrac { y } { 100 } \times 100 = 24$
$x$Intercept
$\left ( 21 , 0 \right )$
$y$Intercept
$\left ( 0 , \dfrac { 21 } { 2 } \right )$
$x$Intercept
$\left ( 12 , 0 \right )$
$y$Intercept
$\left ( 0 , 24 \right )$
$\begin{cases} \dfrac{ x }{ 100 } \times 100+ \dfrac{ y }{ 100 } \times 200 = 21 \\ \dfrac{ x }{ 100 } \times 200+ \dfrac{ y }{ 100 } \times 100 = 24 \end{cases}$
$x = 9 , y = 6$
Solve quadratic equations using the square root
$\begin{cases} \color{#FF6800}{ \dfrac { x } { 100 } } \color{#FF6800}{ \times } \color{#FF6800}{ 100 } + \dfrac { y } { 100 } \times 200 = 21 \\ \dfrac { x } { 100 } \times 200 + \dfrac { y } { 100 } \times 100 = 24 \end{cases}$
$ $ Simplify the expression $ $
$\begin{cases} \color{#FF6800}{ 100 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { x } { 100 } } + \dfrac { y } { 100 } \times 200 = 21 \\ \dfrac { x } { 100 } \times 200 + \dfrac { y } { 100 } \times 100 = 24 \end{cases}$
$\begin{cases} \color{#FF6800}{ 100 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { x } { 100 } } + \dfrac { y } { 100 } \times 200 = 21 \\ \dfrac { x } { 100 } \times 200 + \dfrac { y } { 100 } \times 100 = 24 \end{cases}$
$ $ Calculate the multiplication expression $ $
$\begin{cases} \color{#FF6800}{ x } + \dfrac { y } { 100 } \times 200 = 21 \\ \dfrac { x } { 100 } \times 200 + \dfrac { y } { 100 } \times 100 = 24 \end{cases}$
$\begin{cases} x + \color{#FF6800}{ \dfrac { y } { 100 } } \color{#FF6800}{ \times } \color{#FF6800}{ 200 } = 21 \\ \dfrac { x } { 100 } \times 200 + \dfrac { y } { 100 } \times 100 = 24 \end{cases}$
$ $ Simplify the expression $ $
$\begin{cases} x + \color{#FF6800}{ 200 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { y } { 100 } } = 21 \\ \dfrac { x } { 100 } \times 200 + \dfrac { y } { 100 } \times 100 = 24 \end{cases}$
$\begin{cases} x + \color{#FF6800}{ 200 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { y } { 100 } } = 21 \\ \dfrac { x } { 100 } \times 200 + \dfrac { y } { 100 } \times 100 = 24 \end{cases}$
$ $ Calculate the multiplication expression $ $
$\begin{cases} x + \color{#FF6800}{ 2 } \color{#FF6800}{ y } = 21 \\ \dfrac { x } { 100 } \times 200 + \dfrac { y } { 100 } \times 100 = 24 \end{cases}$
$\begin{cases} x + 2 y = 21 \\ \color{#FF6800}{ \dfrac { x } { 100 } } \color{#FF6800}{ \times } \color{#FF6800}{ 200 } + \dfrac { y } { 100 } \times 100 = 24 \end{cases}$
$ $ Simplify the expression $ $
$\begin{cases} x + 2 y = 21 \\ \color{#FF6800}{ 200 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { x } { 100 } } + \dfrac { y } { 100 } \times 100 = 24 \end{cases}$
$\begin{cases} x + 2 y = 21 \\ \color{#FF6800}{ 200 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { x } { 100 } } + \dfrac { y } { 100 } \times 100 = 24 \end{cases}$
$ $ Calculate the multiplication expression $ $
$\begin{cases} x + 2 y = 21 \\ \color{#FF6800}{ 2 } \color{#FF6800}{ x } + \dfrac { y } { 100 } \times 100 = 24 \end{cases}$
$\begin{cases} x + 2 y = 21 \\ 2 x + \color{#FF6800}{ \dfrac { y } { 100 } } \color{#FF6800}{ \times } \color{#FF6800}{ 100 } = 24 \end{cases}$
$ $ Simplify the expression $ $
$\begin{cases} x + 2 y = 21 \\ 2 x + \color{#FF6800}{ 100 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { y } { 100 } } = 24 \end{cases}$
$\begin{cases} x + 2 y = 21 \\ 2 x + \color{#FF6800}{ 100 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { y } { 100 } } = 24 \end{cases}$
$ $ Calculate the multiplication expression $ $
$\begin{cases} x + 2 y = 21 \\ 2 x + \color{#FF6800}{ y } = 24 \end{cases}$
$\begin{cases} x + 2 y = 21 \\ 2 x + y = 24 \end{cases}$
$ $ Solve a solution to $ x$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 21 } \\ 2 x + y = 24 \end{cases}$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 21 } \\ \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } = \color{#FF6800}{ 24 } \end{cases}$
$ $ Substitute the given $ x $ value into the equation $ 2 x + y = 24$
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 21 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ y } = \color{#FF6800}{ 24 }$
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 21 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ y } = \color{#FF6800}{ 24 }$
$ $ Solve a solution to $ y$
$\color{#FF6800}{ y } = \color{#FF6800}{ 6 }$
$\color{#FF6800}{ y } = \color{#FF6800}{ 6 }$
$ $ Substitute the given $ y $ value into the equation $ x = - 2 y + 21$
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 21 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 21 }$
$ $ Organize the expression $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 9 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 9 }$
$ $ The possible solutions are as follows $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 9 } , \color{#FF6800}{ y } = \color{#FF6800}{ 6 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 9 } , \color{#FF6800}{ y } = \color{#FF6800}{ 6 }$
$ $ Check if it is the solution to the system of equations $ $
$\begin{cases} \color{#FF6800}{ \dfrac { 9 } { 100 } } \color{#FF6800}{ \times } \color{#FF6800}{ 100 } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 6 } { 100 } } \color{#FF6800}{ \times } \color{#FF6800}{ 200 } = \color{#FF6800}{ 21 } \\ \color{#FF6800}{ \dfrac { 9 } { 100 } } \color{#FF6800}{ \times } \color{#FF6800}{ 200 } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 6 } { 100 } } \color{#FF6800}{ \times } \color{#FF6800}{ 100 } = \color{#FF6800}{ 24 } \end{cases}$
$\begin{cases} \color{#FF6800}{ \dfrac { 9 } { 100 } } \color{#FF6800}{ \times } \color{#FF6800}{ 100 } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 6 } { 100 } } \color{#FF6800}{ \times } \color{#FF6800}{ 200 } = \color{#FF6800}{ 21 } \\ \color{#FF6800}{ \dfrac { 9 } { 100 } } \color{#FF6800}{ \times } \color{#FF6800}{ 200 } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 6 } { 100 } } \color{#FF6800}{ \times } \color{#FF6800}{ 100 } = \color{#FF6800}{ 24 } \end{cases}$
$ $ Simplify the equality $ $
$\begin{cases} \color{#FF6800}{ 21 } = \color{#FF6800}{ 21 } \\ \color{#FF6800}{ 24 } = \color{#FF6800}{ 24 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 21 } = \color{#FF6800}{ 21 } \\ \color{#FF6800}{ 24 } = \color{#FF6800}{ 24 } \end{cases}$
$ $ Since it is true in both equations, it is the solution of the system of equations $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 9 } , \color{#FF6800}{ y } = \color{#FF6800}{ 6 }$
$ $ 그래프 보기 $ $
Graph
Solution search results
search-thumbnail-$∩$ $∩1$ 
$ \begin{cases} 3\left(x-1\right)-2\left(1+x\right)<1 \\ 3x-11>0 \end{cases} $ $ \begin{cases} 3x-3-2+2x47 \\ 3x-4>0 \end{cases} $ 
$ \begin{cases} x<7+5 \\ 222l+4 \end{cases} $ $ \begin{cases} x<6 \\ 3x>4 \end{cases} $
1st-6th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo