# Calculator search results

Formula
Permutations and combinations
$\,_{ 4 }P_{ 1 }$
$4$
Find permutations
$\,_{ \color{#FF6800}{ 4 } }P_{ \color{#FF6800}{ 1 } }$
 Arrange the expression using $\,_{n}P_{r} = \dfrac{n!}{\left(n-r\right)!}$
$\color{#FF6800}{ \dfrac { { 4 }! } { { \left ( 4 - 1 \right ) }! } }$
$\dfrac { { 4 }! } { { \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) }! }$
 Subtract $1$ from $4$
$\dfrac { { 4 }! } { { \color{#FF6800}{ 3 } }! }$
$\dfrac { { \color{#FF6800}{ 4 } }! } { { 3 }! }$
 Calculate by using $n! = n\times\left(n-1\right)\times\cdots\times2\times1$
$\dfrac { \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } } { { 3 }! }$
$\dfrac { 4 \times 3 \times 2 \times 1 } { { \color{#FF6800}{ 3 } }! }$
 Calculate by using $n! = n\times\left(n-1\right)\times\cdots\times2\times1$
$\dfrac { 4 \times 3 \times 2 \times 1 } { \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } }$
$\dfrac { 4 \times \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } } { \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } }$
 Do the reduction of the fraction for common parts 
$\color{#FF6800}{ 4 }$
Solution search results