# Calculator search results

Formula
Permutations and combinations
$\,_{ 11 }C_{ 9 }$
$55$
Find a combination
$\,_{ \color{#FF6800}{ 11 } }C_{ \color{#FF6800}{ 9 } }$
 Organize the equation using $\,_{n}C_{r} = \dfrac{\,_{n}P_{r}}{r!} = \dfrac{n!}{\left(n-r\right)!r!}$
$\color{#FF6800}{ \dfrac { { 11 }! } { { \left ( 11 - 9 \right ) }! { 9 }! } }$
$\dfrac { { 11 }! } { { \left ( \color{#FF6800}{ 11 } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \right ) }! { 9 }! }$
 Subtract $9$ from $11$
$\dfrac { { 11 }! } { { \color{#FF6800}{ 2 } }! { 9 }! }$
$\color{#FF6800}{ \dfrac { { 11 }! } { { 2 }! { 9 }! } }$
 Simplify the formula containing the factorial 
$\color{#FF6800}{ \dfrac { 11 \times 10 } { 2 \times 1 } }$
$\dfrac { \color{#FF6800}{ 11 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } } { 2 \times 1 }$
 Calculate the value 
$\dfrac { \color{#FF6800}{ 110 } } { 2 \times 1 }$
$\dfrac { 110 } { \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } }$
 Calculate the value 
$\dfrac { 110 } { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ \dfrac { 110 } { 2 } }$
 Reduce the fraction to the lowest term 
$\color{#FF6800}{ 55 }$
Solution search results