   Symbol

# Calculator search results

Formula
Permutations and combinations
Answer $\,_{ 1 }C_{ 1 }$
$1$
Find a combination
$\,_{ \color{#FF6800}{ 1 } }C_{ \color{#FF6800}{ 1 } }$
 Organize the equation using $\,_{n}C_{r} = \dfrac{\,_{n}P_{r}{r!} = \dfrac{n!}{\left(n-r\right)!r!}$
$\color{#FF6800}{ \dfrac { { 1 }! } { { \left ( 1 - 1 \right ) }! { 1 }! } }$
$\dfrac { { 1 }! } { { \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) }! { 1 }! }$
 Remove the two numbers if the values are the same and the signs are different 
$\dfrac { { 1 }! } { { \color{#FF6800}{ 0 } }! { 1 }! }$
$\dfrac { { 1 }! } { { \color{#FF6800}{ 0 } }! { 1 }! }$
 0! is 1 
$\dfrac { { 1 }! } { \color{#FF6800}{ 1 } \times { 1 }! }$
$\dfrac { { 1 }! } { \color{#FF6800}{ 1 } \times { 1 }! }$
 Multiplying any number by 1 does not change the value 
$\dfrac { { 1 }! } { { 1 }! }$
$\color{#FF6800}{ \dfrac { { 1 }! } { { 1 }! } }$
 Since the numerator and the denominator are same, the value is 1 
$\color{#FF6800}{ 1 }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture